858 research outputs found

    Neural Rendering and Its Hardware Acceleration: A Review

    Full text link
    Neural rendering is a new image and video generation method based on deep learning. It combines the deep learning model with the physical knowledge of computer graphics, to obtain a controllable and realistic scene model, and realize the control of scene attributes such as lighting, camera parameters, posture and so on. On the one hand, neural rendering can not only make full use of the advantages of deep learning to accelerate the traditional forward rendering process, but also provide new solutions for specific tasks such as inverse rendering and 3D reconstruction. On the other hand, the design of innovative hardware structures that adapt to the neural rendering pipeline breaks through the parallel computing and power consumption bottleneck of existing graphics processors, which is expected to provide important support for future key areas such as virtual and augmented reality, film and television creation and digital entertainment, artificial intelligence and the metaverse. In this paper, we review the technical connotation, main challenges, and research progress of neural rendering. On this basis, we analyze the common requirements of neural rendering pipeline for hardware acceleration and the characteristics of the current hardware acceleration architecture, and then discuss the design challenges of neural rendering processor architecture. Finally, the future development trend of neural rendering processor architecture is prospected

    Focal Spot, Winter 2006/2007

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1104/thumbnail.jp

    GPU-friendly marching cubes.

    Get PDF
    Xie, Yongming.Thesis (M.Phil.)--Chinese University of Hong Kong, 2008.Includes bibliographical references (leaves 77-85).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Isosurfaces --- p.1Chapter 1.2 --- Graphics Processing Unit --- p.2Chapter 1.3 --- Objective --- p.3Chapter 1.4 --- Contribution --- p.3Chapter 1.5 --- Thesis Organization --- p.4Chapter 2 --- Marching Cubes --- p.5Chapter 2.1 --- Introduction --- p.5Chapter 2.2 --- Marching Cubes Algorithm --- p.7Chapter 2.3 --- Triangulated Cube Configuration Table --- p.12Chapter 2.4 --- Summary --- p.16Chapter 3 --- Graphics Processing Unit --- p.18Chapter 3.1 --- Introduction --- p.18Chapter 3.2 --- History of Graphics Processing Unit --- p.19Chapter 3.2.1 --- First Generation GPU --- p.20Chapter 3.2.2 --- Second Generation GPU --- p.20Chapter 3.2.3 --- Third Generation GPU --- p.20Chapter 3.2.4 --- Fourth Generation GPU --- p.21Chapter 3.3 --- The Graphics Pipelining --- p.21Chapter 3.3.1 --- Standard Graphics Pipeline --- p.21Chapter 3.3.2 --- Programmable Graphics Pipeline --- p.23Chapter 3.3.3 --- Vertex Processors --- p.25Chapter 3.3.4 --- Fragment Processors --- p.26Chapter 3.3.5 --- Frame Buffer Operations --- p.28Chapter 3.4 --- GPU CPU Analogy --- p.31Chapter 3.4.1 --- Memory Architecture --- p.31Chapter 3.4.2 --- Processing Model --- p.32Chapter 3.4.3 --- Limitation of GPU --- p.33Chapter 3.4.4 --- Input and Output --- p.34Chapter 3.4.5 --- Data Readback --- p.34Chapter 3.4.6 --- FramebufFer --- p.34Chapter 3.5 --- Summary --- p.35Chapter 4 --- Volume Rendering --- p.37Chapter 4.1 --- Introduction --- p.37Chapter 4.2 --- History of Volume Rendering --- p.38Chapter 4.3 --- Hardware Accelerated Volume Rendering --- p.40Chapter 4.3.1 --- Hardware Acceleration Volume Rendering Methods --- p.41Chapter 4.3.2 --- Proxy Geometry --- p.42Chapter 4.3.3 --- Object-Aligned Slicing --- p.43Chapter 4.3.4 --- View-Aligned Slicing --- p.45Chapter 4.4 --- Summary --- p.48Chapter 5 --- GPU-Friendly Marching Cubes --- p.49Chapter 5.1 --- Introduction --- p.49Chapter 5.2 --- Previous Work --- p.50Chapter 5.3 --- Traditional Method --- p.52Chapter 5.3.1 --- Scalar Volume Data --- p.53Chapter 5.3.2 --- Isosurface Extraction --- p.53Chapter 5.3.3 --- Flow Chart --- p.54Chapter 5.3.4 --- Transparent Isosurfaces --- p.56Chapter 5.4 --- Our Method --- p.56Chapter 5.4.1 --- Cell Selection --- p.59Chapter 5.4.2 --- Vertex Labeling --- p.61Chapter 5.4.3 --- Cell Indexing --- p.62Chapter 5.4.4 --- Interpolation --- p.65Chapter 5.5 --- Rendering Translucent Isosurfaces --- p.67Chapter 5.6 --- Implementation and Results --- p.69Chapter 5.7 --- Summary --- p.74Chapter 6 --- Conclusion --- p.76Bibliography --- p.7

    Open-source software in medical imaging: development of OsiriX

    Get PDF
    Purpose Open source software (oss) development for medical imaging enables collaboration of individuals and groups to produce high-quality tools that meet user needs. This process is reviewed and illustrated with OsiriX, a fast DICOM viewer program for the Apple Macintosh. Materials and methods OsiriX is an oss for the Apple Macintosh under Mac OS X v10.4 or higher specifically designed for navigation and visualization of multimodality and multidimensional images: 2D Viewer, 3D Viewer, 4D Viewer (3D series with temporal dimension, for example: Cardiac-CT) and 5D Viewer (3D series with temporal and functional dimensions, for example: Cardiac-PET-CT). The 3D Viewer offers all modern rendering modes: multiplanar reconstruction, surface rendering, volume rendering and maximum Intensity projection. All these modes support 4D data and are able to produce image fusion between two different series (for example: PET-CT). OsiriX was developed using the Apple Xcode development environment and Cocoa framework as both a DICOM PACS workstation for medical imaging and an image processing software package for medical research (radiology and nuclear imaging), functional imaging, 3D imaging, confocal microscopy and molecular imaging. Results OsiriX is an open source program by Antoine Rosset, a radiologist and software developer, was designed specifically for the needs of advanced imaging modalities. The software program turns an Apple Macintosh into a DICOM PACS workstation for medical imaging and image processing. OsiriX is distributed free of charge under the GNU General Public License and its source code is available to anyone. This system illustrates how open software development for medical imaging tools can be successfully designed, implemented and disseminated. Conclusion oss development can provide useful cost effective tools tailored to specific needs and clinical tasks. The integrity and quality assurance of open software developed by a community of users does not follow the traditional conformance and certification required for commercial medical software programs. However, open software can lead to innovative solutions designed by users better suited for specific task

    Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Get PDF
    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented

    MEDIT : An interactive Mesh visualization Software

    Get PDF
    This technical report describes the main features of MEDIT (This software wa registered with the APP under n° IDDN.FR.001.410023.00.R.P. 2001.000.10800 on january 25, 2001.), an interactive mesh visualization tool developped in the Gamma project at INRIA-Rocquencourt. Based on the graphic standard OpenGL, this software has been specifically designed to fulfill most of the common requirements of engineers and numericians, in the context of numerical simulations. This program is rather intuitive and, therefore, the user does not really need any specific learning stage prior to be able to play with it. In this document, the user will learn how to visualize and manipulate mesh data structures via the mouse, how to deal with scalar/ten- sor values associated with a mesh and how to deal with more complex features (e.g., animations, postscript or image output creation, etc.). This document describes the features of the current version : release V2.1 (June, 2001) and, as such, replaces the previous document [3]
    corecore