46,225 research outputs found

    On Capacity of the Dirty Paper Channel with Fading Dirt in the Strong Fading Regime

    Full text link
    The classical writing on dirty paper capacity result establishes that full interference pre-cancellation can be attained in Gelfand-Pinsker problem with additive state and additive white Gaussian noise. This result holds under the idealized assumption that perfect channel knowledge is available at both transmitter and receiver. While channel knowledge at the receiver can be obtained through pilot tones, transmitter channel knowledge is harder to acquire. For this reason, we are interested in characterizing the capacity under the more realistic assumption that only partial channel knowledge is available at the transmitter. We study, more specifically, the dirty paper channel in which the interference sequence in multiplied by fading value unknown to the transmitter but known at the receiver. For this model, we establish an approximate characterization of capacity for the case in which fading values vary greatly in between channel realizations. In this regime, which we term the strong fading regime, the capacity pre-log factor is equal to the inverse of the number of possible fading realizations

    Writing on Dirty Paper with Resizing and its Application to Quasi-Static Fading Broadcast Channels

    Full text link
    This paper studies a variant of the classical problem of ``writing on dirty paper'' in which the sum of the input and the interference, or dirt, is multiplied by a random variable that models resizing, known to the decoder but not to the encoder. The achievable rate of Costa's dirty paper coding (DPC) scheme is calculated and compared to the case of the decoder's also knowing the dirt. In the ergodic case, the corresponding rate loss vanishes asymptotically in the limits of both high and low signal-to-noise ratio (SNR), and is small at all finite SNR for typical distributions like Rayleigh, Rician, and Nakagami. In the quasi-static case, the DPC scheme is lossless at all SNR in terms of outage probability. Quasi-static fading broadcast channels (BC) without transmit channel state information (CSI) are investigated as an application of the robustness properties. It is shown that the DPC scheme leads to an outage achievable rate region that strictly dominates that of time division.Comment: To appear in IEEE International Symposium on Information Theory 200

    State Amplification

    Full text link
    We consider the problem of transmitting data at rate R over a state dependent channel p(y|x,s) with the state information available at the sender and at the same time conveying the information about the channel state itself to the receiver. The amount of state information that can be learned at the receiver is captured by the mutual information I(S^n; Y^n) between the state sequence S^n and the channel output Y^n. The optimal tradeoff is characterized between the information transmission rate R and the state uncertainty reduction rate \Delta, when the state information is either causally or noncausally available at the sender. This result is closely related and in a sense dual to a recent study by Merhav and Shamai, which solves the problem of masking the state information from the receiver rather than conveying it.Comment: 9 pages, 4 figures, submitted to IEEE Trans. Inform. Theory, revise
    • …
    corecore