2,262 research outputs found

    Space-time adaptive processing techniques for multichannel mobile passive radar

    Get PDF
    Passive radar technology has reached a level of maturity for stationary sensor operations, widely proving the ability to detect, localize and track targets, by exploiting different kinds of illuminators of opportunity. In recent years, a renewed interest from both the scientific community and the industry has opened new perspectives and research areas. One of the most interesting and challenging ones is the use of passive radar sensors onboard moving platforms. This may offer a number of strategic advantages and extend the functionalities of passive radar to applications like synthetic aperture radar (SAR) imaging and ground moving target indication (GMTI). However, these benefits are paid in terms of motion-induced Doppler distortions of the received signals, which can adversely affect the system performance. In the case of surveillance applications, the detection of slowly moving targets is hindered by the Doppler-spread clutter returns, due to platform motion, and requires the use of space-time processing techniques, applied on signals collected by multiple receiving channels. Although in recent technical literature the feasibility of this concept has been preliminarily demonstrated, mobile passive radar is still far from being a mature technology and several issues still need to be addressed, mostly connected to the peculiar characteristics of the passive bistatic scenario. Specifically, significant limitations may come from the continuous and time-varying nature of the typical waveforms of opportunity, not suitable for conventional space-time processing techniques. Moreover, the low directivity of the practical receiving antennas, paired with a bistatic omni-directional illumination, further increases the clutter Doppler bandwidth and results in the simultaneous reception of non-negligible clutter contributions from a very wide angular sector. Such contributions are likely to undergo an angle-dependent imbalance across the receiving channels, exacerbated by the use of low-cost hardware. This thesis takes research on mobile passive radar for surveillance applications one step further, finding solutions to tackle the main limitations deriving from the passive bistatic framework, while preserving the paradigm of a simple system architecture. Attention is devoted to the development of signal processing algorithms and operational strategies for multichannel mobile passive radar, focusing on space-time processing techniques aimed at clutter cancellation and slowly moving target detection and localization. First, a processing scheme based on the displaced phase centre antenna (DPCA) approach is considered, for dual-channel systems. The scheme offers a simple and effective solution for passive radar GMTI, but its cancellation performance can be severely compromised by the presence of angle-dependent imbalances affecting the receiving channels. Therefore, it is paired with adaptive clutter-based calibration techniques, specifically devised for mobile passive radar. By exploiting the fine Doppler resolution offered by the typical long integration times and the one-to-one relationship between angle of arrival and Doppler frequency of the stationary scatterers, the devised techniques compensate for the angle-dependent imbalances and prove largely necessary to guarantee an effective clutter cancellation. Then, the attention is focused on space-time adaptive processing (STAP) techniques for multichannel mobile passive radar. In this case, the clutter cancellation capability relies on the adaptivity of the space-time filter, by resorting to an adjacent-bin post-Doppler (ABPD) approach. This allows to significantly reduce the size of the adaptive problem and intrinsically compensate for potential angle-dependent channel errors, by operating on a clutter subspace accounting for a limited angular sector. Therefore, ad hoc strategies are devised to counteract the effects of channel imbalance on the moving target detection and localization performance. By exploiting the clutter echoes to correct the spatial steering vector mismatch, the proposed STAP scheme is shown to enable an accurate estimation of target direction of arrival (DOA), which represents a critical task in system featuring few wide beam antennas. Finally, a dual cancelled channel STAP scheme is proposed, aimed at further reducing the system computational complexity and the number of required training data, compared to a conventional full-array solution. The proposed scheme simplifies the DOA estimation process and proves to be robust against the adaptivity losses commonly arising in a real bistatic clutter scenario, allowing effective operation even in the case of a limited sample support. The effectiveness of the techniques proposed in this work is validated by means of extensive simulated analyses and applications to real data, collected by an experimental multichannel passive radar installed on a moving platform and based on DVB-T transmission

    DVB-T-Based passive forward scatter radar: Inherent limitations and enabling solutions

    Get PDF
    This article investigates the target detection capability of a passive forward scatter radar (PFSR) exploiting a digital video broadcasting-terrestrial (DVB-T) transmitter as illuminator of opportunity. By means of theoretical and simulated analyses, it is shown that conventional processing schemes might suffer from significant performance degradation when exploiting orthogonal frequency division multiplexing (OFDM) waveforms of opportunity compared to other broadcast transmissions (e.g., frequency modulation radio broadcast). Specifically, the direct application of conventional processing approaches to the case of a DVB-T PFSR is demonstrated to yield: 1) a nonnegligible increase of the competing background level and 2) a steeper fading of the target response due to the intrinsic characteristics of the exploited waveforms of opportunity, above all the modulation scheme and the signal spectral characteristics. Therefore, appropriate signal processing techniques are proposed to avoid these effects which jeopardize the target detection capability. The conceived processing scheme exploits the digital nature of the employed waveforms and a subband approach for improving both the interference cancellation stage and the target signature extraction. The benefits of the proposed approach are illustrated by means of theoretical and simulated analyses. The application of the resulting processing scheme against experimental data proves its effectiveness in practical scenarios

    A fully photonics-based coherent radar system

    Get PDF
    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system

    Terahertz Micro-Doppler Radar for Detection and Characterization of Multicopters

    Get PDF
    abstract: The micromotions (e.g. vibration, rotation, etc.,) of a target induce time-varying frequency modulations on the reflected signal, called the micro-Doppler modulations. Micro-Doppler modulations are target specific and may contain information needed to detect and characterize the target. Thus, unlike conventional Doppler radars, Fourier transform cannot be used for the analysis of these time dependent frequency modulations. While Doppler radars can detect the presence of a target and deduce if it is approaching or receding from the radar location, they cannot identify the target. Meaning, for a Doppler radar, a small commercial aircraft and a fighter plane when gliding at the same velocity exhibit similar radar signature. However, using a micro-Doppler radar, the time dependent frequency variations caused by the vibrational and rotational micromotions of the two aircrafts can be captured and analyzed to discern between them. Similarly, micro-Doppler signature can be used to distinguish a multicopter from a bird, a quadcopter from a hexacopter or a octacopter, a bus from a car or a truck and even one person from another. In all these scenarios, joint time-frequency transforms must be employed for the analysis of micro-Doppler variations, in order to extract the targets’ features. Due to ample bandwidth, THz radiation provides richer radar signals than the microwave systems. Thus, a Terahertz (THz) micro-Doppler radar is developed in this work for the detection and characterization of the micro-Doppler signatures of quadcopters. The radar is implemented as a continuous-wave (CW) radar in monostatic configuration and operates at a low-THz frequency of 270 GHz. A linear time-frequency transform, the short-time Fourier transform (STFT) is used for the analysis the micro-Doppler signature. The designed radar has been built and measurements are carried out using a quadcopter to detect the micro-Doppler modulations caused by the rotation of its propellers. The spectrograms are obtained for a quadcopter hovering in front of the radar and analysis methods are developed for characterizing the frequency variations caused by the rotational and vibrational micromotions of the quadcopter. The proposed method can be effective for distinguishing the quadcopters from other flying targets like birds which lack the rotational micromotions.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    STAR-RIS-Enabled Secure Dual-Functional Radar-Communications: Joint Waveform and Reflective Beamforming Optimization

    Get PDF
    Considering a simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS)-aided dual-functional radar-communications (DFRC) system, this paper proposes a symbol-level precoding-based scheme for concurrent securing confidential information transmission and performing target sensing, where the public signals intended for multiple unclassified users are exploited to deceive the multiple potential malicious radar targets. Specifically, the STAR-RIS-aided DFRC system design is formulated as a joint optimization problem that determines the transmission waveform signal, the transmission and reflection coefficients of STAR-RIS. The objective is to maximize the average received radar sensing power subject to the quality-of-service constraints for multiple communication users, the security constraint for multiple potential eavesdroppers, as well as various practical waveform design restrictions. However, the formulated problem is challenging to handle due to its nonconvexity. Furthermore, the high dimensionality of the optimization variables also renders existing optimization algorithms inefficient. To address these issues, we propose a distance-majorization induced low-complexity algorithm to obtain an efficient solution, which converts the nonconvex joint design problem into a sequence of subproblems that can be solved in closed-form, relieving the required high computational burden of the conventional approaches, e.g., the interior point method. Simulation results confirm the effectiveness of the STAR-RIS in improving the DFRC performance. Besides, by comparing with the state-of-the-art alternating direction method of multipliers (ADMM) algorithm, simulation results validate the efficiency of our proposed optimization algorithm and show that it enjoys excellent scalability for different number of T-R elements equipped at the STAR-RIS

    Ambiguity Function Analysis and Direct-Path Signal Filtering of the Digital Audio Broadcast (DAB) Waveform for Passive Coherent Location (PCL)

    Get PDF
    This research presents an ambiguity function analysis of the digital audio broadcast (DAB) waveform and one signal detection approach based on signal space projection techniques that effectively filters the direct-path signal from the receiver target channel. Currently, most Passive Coherent Location (PCL) research efforts are focused and based on frequency modulated (FM) radio broadcasts and analog television (TV) waveforms. One active area of PCL research includes the search for new waveforms of opportunity that can be exploited for PCL applications. As considered for this research, one possible waveform of opportunity is the European digital radio standard DAB. For this research, the DAB performance is analyzed for application as a PCL waveform of opportunity. For this analysis, DAB ambiguity function calculations and ambiguity surface plots are created and evaluated. Signal detection capability, to include characterization of time-delay and Doppler-shift measurement accuracy and resolution, is investigated and determined to be quite acceptable for the DAB wavefor

    Analysis and exploitation of complex SAR phenomena produced from vibrating targets

    Get PDF

    Joint Design of Overlaid Communication Systems and Pulsed Radars

    Full text link
    The focus of this paper is on co-existence between a communication system and a pulsed radar sharing the same bandwidth. Based on the fact that the interference generated by the radar onto the communication receiver is intermittent and depends on the density of scattering objects (such as, e.g., targets), we first show that the communication system is equivalent to a set of independent parallel channels, whereby pre-coding on each channel can be introduced as a new degree of freedom. We introduce a new figure of merit, named the {\em compound rate}, which is a convex combination of rates with and without interference, to be optimized under constraints concerning the signal-to-interference-plus-noise ratio (including {\em signal-dependent} interference due to clutter) experienced by the radar and obviously the powers emitted by the two systems: the degrees of freedom are the radar waveform and the afore-mentioned encoding matrix for the communication symbols. We provide closed-form solutions for the optimum transmit policies for both systems under two basic models for the scattering produced by the radar onto the communication receiver, and account for possible correlation of the signal-independent fraction of the interference impinging on the radar. We also discuss the region of the achievable communication rates with and without interference. A thorough performance assessment shows the potentials and the limitations of the proposed co-existing architecture

    Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications

    Full text link
    Orbital angular momentum (OAM) has aroused a widespread interest in many fields, especially in telecommunications due to its potential for unleashing new capacity in the severely congested spectrum of commercial communication systems. Beams carrying OAM have a helical phase front and a field strength with a singularity along the axial center, which can be used for information transmission, imaging and particle manipulation. The number of orthogonal OAM modes in a single beam is theoretically infinite and each mode is an element of a complete orthogonal basis that can be employed for multiplexing different signals, thus greatly improving the spectrum efficiency. In this paper, we comprehensively summarize and compare the methods for generation and detection of optical OAM, radio OAM and acoustic OAM. Then, we represent the applications and technical challenges of OAM in communications, including free-space optical communications, optical fiber communications, radio communications and acoustic communications. To complete our survey, we also discuss the state of art of particle manipulation and target imaging with OAM beams
    • …
    corecore