34 research outputs found

    Query-dependent metric learning for adaptive, content-based image browsing and retrieval

    Get PDF

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    Learning to Summarize Videos by Contrasting Clips

    Full text link
    Video summarization aims at choosing parts of a video that narrate a story as close as possible to the original one. Most of the existing video summarization approaches focus on hand-crafted labels. As the number of videos grows exponentially, there emerges an increasing need for methods that can learn meaningful summarizations without labeled annotations. In this paper, we aim to maximally exploit unsupervised video summarization while concentrating the supervision to a few, personalized labels as an add-on. To do so, we formulate the key requirements for the informative video summarization. Then, we propose contrastive learning as the answer to both questions. To further boost Contrastive video Summarization (CSUM), we propose to contrast top-k features instead of a mean video feature as employed by the existing method, which we implement with a differentiable top-k feature selector. Our experiments on several benchmarks demonstrate, that our approach allows for meaningful and diverse summaries when no labeled data is provided

    Automatic annotation for weakly supervised learning of detectors

    Get PDF
    PhDObject detection in images and action detection in videos are among the most widely studied computer vision problems, with applications in consumer photography, surveillance, and automatic media tagging. Typically, these standard detectors are fully supervised, that is they require a large body of training data where the locations of the objects/actions in images/videos have been manually annotated. With the emergence of digital media, and the rise of high-speed internet, raw images and video are available for little to no cost. However, the manual annotation of object and action locations remains tedious, slow, and expensive. As a result there has been a great interest in training detectors with weak supervision where only the presence or absence of object/action in image/video is needed, not the location. This thesis presents approaches for weakly supervised learning of object/action detectors with a focus on automatically annotating object and action locations in images/videos using only binary weak labels indicating the presence or absence of object/action in images/videos. First, a framework for weakly supervised learning of object detectors in images is presented. In the proposed approach, a variation of multiple instance learning (MIL) technique for automatically annotating object locations in weakly labelled data is presented which, unlike existing approaches, uses inter-class and intra-class cue fusion to obtain the initial annotation. The initial annotation is then used to start an iterative process in which standard object detectors are used to refine the location annotation. Finally, to ensure that the iterative training of detectors do not drift from the object of interest, a scheme for detecting model drift is also presented. Furthermore, unlike most other methods, our weakly supervised approach is evaluated on data without manual pose (object orientation) annotation. Second, an analysis of the initial annotation of objects, using inter-class and intra-class cues, is carried out. From the analysis, a new method based on negative mining (NegMine) is presented for the initial annotation of both object and action data. The NegMine based approach is a much simpler formulation using only inter-class measure and requires no complex combinatorial optimisation but can still meet or outperform existing approaches including the previously pre3 sented inter-intra class cue fusion approach. Furthermore, NegMine can be fused with existing approaches to boost their performance. Finally, the thesis will take a step back and look at the use of generic object detectors as prior knowledge in weakly supervised learning of object detectors. These generic object detectors are typically based on sampling saliency maps that indicate if a pixel belongs to the background or foreground. A new approach to generating saliency maps is presented that, unlike existing approaches, looks beyond the current image of interest and into images similar to the current image. We show that our generic object proposal method can be used by itself to annotate the weakly labelled object data with surprisingly high accuracy

    TR-DETR: Task-Reciprocal Transformer for Joint Moment Retrieval and Highlight Detection

    Full text link
    Video moment retrieval (MR) and highlight detection (HD) based on natural language queries are two highly related tasks, which aim to obtain relevant moments within videos and highlight scores of each video clip. Recently, several methods have been devoted to building DETR-based networks to solve both MR and HD jointly. These methods simply add two separate task heads after multi-modal feature extraction and feature interaction, achieving good performance. Nevertheless, these approaches underutilize the reciprocal relationship between two tasks. In this paper, we propose a task-reciprocal transformer based on DETR (TR-DETR) that focuses on exploring the inherent reciprocity between MR and HD. Specifically, a local-global multi-modal alignment module is first built to align features from diverse modalities into a shared latent space. Subsequently, a visual feature refinement is designed to eliminate query-irrelevant information from visual features for modal interaction. Finally, a task cooperation module is constructed to refine the retrieval pipeline and the highlight score prediction process by utilizing the reciprocity between MR and HD. Comprehensive experiments on QVHighlights, Charades-STA and TVSum datasets demonstrate that TR-DETR outperforms existing state-of-the-art methods. Codes are available at \url{https://github.com/mingyao1120/TR-DETR}.Comment: Accepted by AAAI-2

    Collaborative Noisy Label Cleaner: Learning Scene-aware Trailers for Multi-modal Highlight Detection in Movies

    Full text link
    Movie highlights stand out of the screenplay for efficient browsing and play a crucial role on social media platforms. Based on existing efforts, this work has two observations: (1) For different annotators, labeling highlight has uncertainty, which leads to inaccurate and time-consuming annotations. (2) Besides previous supervised or unsupervised settings, some existing video corpora can be useful, e.g., trailers, but they are often noisy and incomplete to cover the full highlights. In this work, we study a more practical and promising setting, i.e., reformulating highlight detection as "learning with noisy labels". This setting does not require time-consuming manual annotations and can fully utilize existing abundant video corpora. First, based on movie trailers, we leverage scene segmentation to obtain complete shots, which are regarded as noisy labels. Then, we propose a Collaborative noisy Label Cleaner (CLC) framework to learn from noisy highlight moments. CLC consists of two modules: augmented cross-propagation (ACP) and multi-modality cleaning (MMC). The former aims to exploit the closely related audio-visual signals and fuse them to learn unified multi-modal representations. The latter aims to achieve cleaner highlight labels by observing the changes in losses among different modalities. To verify the effectiveness of CLC, we further collect a large-scale highlight dataset named MovieLights. Comprehensive experiments on MovieLights and YouTube Highlights datasets demonstrate the effectiveness of our approach. Code has been made available at: https://github.com/TencentYoutuResearch/HighlightDetection-CLCComment: Accepted to CVPR202

    Weakly-Supervised Action Localization by Hierarchically-structured Latent Attention Modeling

    Full text link
    Weakly-supervised action localization aims to recognize and localize action instancese in untrimmed videos with only video-level labels. Most existing models rely on multiple instance learning(MIL), where the predictions of unlabeled instances are supervised by classifying labeled bags. The MIL-based methods are relatively well studied with cogent performance achieved on classification but not on localization. Generally, they locate temporal regions by the video-level classification but overlook the temporal variations of feature semantics. To address this problem, we propose a novel attention-based hierarchically-structured latent model to learn the temporal variations of feature semantics. Specifically, our model entails two components, the first is an unsupervised change-points detection module that detects change-points by learning the latent representations of video features in a temporal hierarchy based on their rates of change, and the second is an attention-based classification model that selects the change-points of the foreground as the boundaries. To evaluate the effectiveness of our model, we conduct extensive experiments on two benchmark datasets, THUMOS-14 and ActivityNet-v1.3. The experiments show that our method outperforms current state-of-the-art methods, and even achieves comparable performance with fully-supervised methods.Comment: Accepted to ICCV 2023. arXiv admin note: text overlap with arXiv:2203.15187, arXiv:2003.12424, arXiv:2104.02967 by other author
    corecore