15,488 research outputs found

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Finding Associations and Computing Similarity via Biased Pair Sampling

    Full text link
    This version is ***superseded*** by a full version that can be found at http://www.itu.dk/people/pagh/papers/mining-jour.pdf, which contains stronger theoretical results and fixes a mistake in the reporting of experiments. Abstract: Sampling-based methods have previously been proposed for the problem of finding interesting associations in data, even for low-support items. While these methods do not guarantee precise results, they can be vastly more efficient than approaches that rely on exact counting. However, for many similarity measures no such methods have been known. In this paper we show how a wide variety of measures can be supported by a simple biased sampling method. The method also extends to find high-confidence association rules. We demonstrate theoretically that our method is superior to exact methods when the threshold for "interesting similarity/confidence" is above the average pairwise similarity/confidence, and the average support is not too low. Our method is particularly good when transactions contain many items. We confirm in experiments on standard association mining benchmarks that this gives a significant speedup on real data sets (sometimes much larger than the theoretical guarantees). Reductions in computation time of over an order of magnitude, and significant savings in space, are observed.Comment: This is an extended version of a paper that appeared at the IEEE International Conference on Data Mining, 2009. The conference version is (c) 2009 IEE
    corecore