26,320 research outputs found

    Central Binomial Sums, Multiple Clausen Values and Zeta Values

    Get PDF
    We find and prove relationships between Riemann zeta values and central binomial sums. We also investigate alternating binomial sums (also called Ap\'ery sums). The study of non-alternating sums leads to an investigation of different types of sums which we call multiple Clausen values. The study of alternating sums leads to a tower of experimental results involving polylogarithms in the golden ratio. In the non-alternating case, there is a strong connection to polylogarithms of the sixth root of unity, encountered in the 3-loop Feynman diagrams of {\tt hep-th/9803091} and subsequently in hep-ph/9910223, hep-ph/9910224, cond-mat/9911452 and hep-th/0004010.Comment: 17 pages, LaTeX, with use of amsmath and amssymb packages, to appear in Journal of Experimental Mathematic

    Single-scale diagrams and multiple binomial sums

    Get PDF
    The ϵ\epsilon-expansion of several two-loop self-energy diagrams with different thresholds and one mass are calculated. On-shell results are reduced to multiple binomial sums which values are presented in analytical form.Comment: 10 pp LaTeX, misprints in app. A and minor misprints in the text correcte

    Iterated Binomial Sums and their Associated Iterated Integrals

    Full text link
    We consider finite iterated generalized harmonic sums weighted by the binomial (2kk)\binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for NN \rightarrow \infty and the iterated integrals at x=1x=1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit NN \rightarrow \infty of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to NCN \in \mathbb{C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as e.g. for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.Comment: 62 pages Latex, 1 style fil

    Multiple binomial sums

    Get PDF
    International audienceMultiple binomial sums form a large class of multi-indexed sequences, closed under partial summation, which contains most of the sequences obtained by multiple summation of products of binomial coefficients and also all the sequences with algebraic generating function. We study the representation of the generating functions of binomial sums by integrals of rational functions. The outcome is twofold. Firstly, we show that a univariate sequence is a multiple binomial sum if and only if its generating function is the diagonal of a rational function. Secondly, we propose algorithms that decide the equality of multiple binomial sums and that compute recurrence relations for them. In conjunction with geometric simplifications of the integral representations, this approach behaves well in practice. The process avoids the computation of certificates and the problem of the appearance of spurious singularities that afflicts discrete creative telescoping, both in theory and in practice

    Series and epsilon-expansion of the hypergeometric functions

    Full text link
    Recent progress in analytical calculation of the multiple [inverse, binomial, harmonic] sums, related with epsilon-expansion of the hypergeometric function of one variable are discussed.Comment: 5 pages, to appear in the proceedings of 7th DESY Workshop on Elementary Particle Theory "Loops and Legs in Quantum Field Theory", April 25 -30, 2004, Zinnowitz (Usedom Island), German

    Multiple harmonic sums and Wolstenholme's theorem

    Full text link
    We give a family of congruences for the binomial coefficients (kp1p1){kp-1\choose p-1} in terms of multiple harmonic sums, a generalization of the harmonic numbers. Each congruence in this family (which depends on an additional parameter nn) involves a linear combination of nn multiple harmonic sums, and holds modp2n+3\mod{p^{2n+3}}. The coefficients in these congruences are integers depending on nn and kk, but independent of pp. More generally, we construct a family of congruences for (kp1p1)modp2n+3{kp-1\choose p-1} \mod{p^{2n+3}}, whose members contain a variable number of terms, and show that in this family there is a unique "optimized" congruence involving the fewest terms. The special case k=2k=2 and n=0n=0 recovers Wolstenholme's theorem (2p1p1)1modp3{2p-1\choose p-1}\equiv 1\mod{p^3}, valid for all primes p5p\geq 5. We also characterize those triples (n,k,p)(n, k, p) for which the optimized congruence holds modulo an extra power of pp: they are precisely those with either pp dividing the numerator of the Bernoulli number Bp2nkB_{p-2n-k}, or k0,1modpk \equiv 0, 1 \mod p.Comment: 22 page
    corecore