665 research outputs found

    Exploiting Local Features from Deep Networks for Image Retrieval

    Full text link
    Deep convolutional neural networks have been successfully applied to image classification tasks. When these same networks have been applied to image retrieval, the assumption has been made that the last layers would give the best performance, as they do in classification. We show that for instance-level image retrieval, lower layers often perform better than the last layers in convolutional neural networks. We present an approach for extracting convolutional features from different layers of the networks, and adopt VLAD encoding to encode features into a single vector for each image. We investigate the effect of different layers and scales of input images on the performance of convolutional features using the recent deep networks OxfordNet and GoogLeNet. Experiments demonstrate that intermediate layers or higher layers with finer scales produce better results for image retrieval, compared to the last layer. When using compressed 128-D VLAD descriptors, our method obtains state-of-the-art results and outperforms other VLAD and CNN based approaches on two out of three test datasets. Our work provides guidance for transferring deep networks trained on image classification to image retrieval tasks.Comment: CVPR DeepVision Workshop 201

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Mid-level Deep Pattern Mining

    Full text link
    Mid-level visual element discovery aims to find clusters of image patches that are both representative and discriminative. In this work, we study this problem from the prospective of pattern mining while relying on the recently popularized Convolutional Neural Networks (CNNs). Specifically, we find that for an image patch, activations extracted from the first fully-connected layer of CNNs have two appealing properties which enable its seamless integration with pattern mining. Patterns are then discovered from a large number of CNN activations of image patches through the well-known association rule mining. When we retrieve and visualize image patches with the same pattern, surprisingly, they are not only visually similar but also semantically consistent. We apply our approach to scene and object classification tasks, and demonstrate that our approach outperforms all previous works on mid-level visual element discovery by a sizeable margin with far fewer elements being used. Our approach also outperforms or matches recent works using CNN for these tasks. Source code of the complete system is available online.Comment: Published in Proc. IEEE Conf. Computer Vision and Pattern Recognition 201
    • …
    corecore