41,397 research outputs found

    AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    Get PDF
    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network, the node deployment by means of an autonomous helicopter, and the surveillance and tracking functionalities of the platform. Furthermore, the paper presents the first general experiments of the AWARE project that took place in March 2007 with the assistance of the Seville fire brigades

    Energy Harvesting and Management for Wireless Autonomous Sensors

    No full text
    Wireless autonomous sensors that harvest ambient energy are attractive solutions, due to their convenience and economic benefits. A number of wireless autonomous sensor platforms which consume less than 100?W under duty-cycled operation are available. Energy harvesting technology (including photovoltaics, vibration harvesters, and thermoelectrics) can be used to power autonomous sensors. A developed system is presented that uses a photovoltaic module to efficiently charge a supercapacitor, which in turn provides energy to a microcontroller-based autonomous sensing platform. The embedded software on the node is structured around a framework in which equal precedent is given to each aspect of the sensor node through the inclusion of distinct software stacks for energy management and sensor processing. This promotes structured and modular design, allowing for efficient code reuse and encourages the standardisation of interchangeable protocols

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Flexible Integration of Alternative Energy Sources for Autonomous Sensing

    No full text
    Recent developments in energy harvesting and autonomous sensing mean that it is now possible to power sensors solely from energy harvested from the environment. Clearly this is dependent on sufficient environmental energy being present. The range of feasible environments for operation can be extended by combining multiple energy sources on a sensor node. The effective monitoring of their energy resources is also important to deliver sustained and effective operation. This paper outlines the issues concerned with combining and managing multiple energy sources on sensor nodes. This problem is approached from both a hardware and embedded software viewpoint. A complete system is described in which energy is harvested from both light and vibration, stored in a common energy store, and interrogated and managed by the node

    Monitoring of gas emissions at landfill sites using autonomous gas sensors

    Get PDF
    Executive Summary This report details the work carried out during the Smart Plant project (2005-AIC-MS-43-M4). As part of this research, an autonomous platform for monitoring greenhouse gases (methane (CH4), carbon dioxide (CO2)) has been developed, prototyped and field validated. The modular design employed means that the platform can be readily adapted for a variety of applications involving these and other target gases such as hydrogen sulfide (H2S), ammonia (NH3) and carbon monoxide (CO) and the authors are in the process of completing several short demonstrator projects to illustrate the potential of the platform for some of these applications. The field validation for the greenhouse gas monitoring platform was carried out at two landfill sites in Ireland. The unit was used to monitor the concentration of CO2 and CH4 gas at perimeter borehole wells. The final prototype was deployed for over 4 months and successfully extracted samples from the assigned perimeter borehole well headspace, measured them and sent the data to a database via a global system for mobile (GSM) communications. The data were represented via an updating graph in a web interface. Sampling was carried out twice per day, giving a 60-fold increase on current monitoring procedures which provide one gas concentration measurement per month. From additional work described in this report, a number of conclusions were drawn regarding lateral landfill gas migration on a landfill site and the management of this migration to the site’s perimeter. To provide frequent, reliable monitoring of landfill gas migration to perimeter borehole wells, the unit needs to: • Be fully autonomous; • Be capable of extracting a gas sample from a borehole well independently of personnel; • Be able to relay the data in near real time to a base station; and • Have sensors with a range capable of adequately monitoring gas events accurately at all times. The authors believe that a unit capable of such monitoring has been developed and validated. This unit provides a powerful tool for effective management of landfill site gases. The effectiveness of this unit has been recognised by the site management team at the long-term deployment trial site, and the data gathered have been used to improve the day-to-day operations and gas management system on-site. The authors make the following recommendations: 1. The dynamics of the landfill gas management system cannot be captured by taking measurements once per month; thus, a minimum sampling rate of once per day is advised. 2. The sampling protocol should be changed: (i) Borehole well samples should not be taken from the top of the well but should be extracted at a depth within the headspace (0.5–1.0 m). The measurement depth will be dependent on the water table and headspace depth within the borehole well. (ii) The sampling time should be increased to 3 min to obtain a steady-state measurement from the headspace and to take a representative sample; and (iii) For continuous monitoring on-site, the extracted sample should be recycled back into the borehole well. However, for compliance monitoring, the sample should not be returned to the borehole well. 3. Devices should be placed at all borehole wells so the balance on the site can be maintained through the gas management system and extraction issues can be quickly recognised and addressed before there are events of high gas migration to the perimeter. 4. A pilot study should be carried out by the EPA using 10 of these autonomous devices over three to five sites to show the need and value for this type of sampling on Irish landfill sites
    corecore