10,639 research outputs found

    Joint Block-Sparse Recovery Using Simultaneous BOMP/BOLS

    Full text link
    We consider the greedy algorithms for the joint recovery of high-dimensional sparse signals based on the block multiple measurement vector (BMMV) model in compressed sensing (CS). To this end, we first put forth two versions of simultaneous block orthogonal least squares (S-BOLS) as the baseline for the OLS framework. Their cornerstone is to sequentially check and select the support block to minimize the residual power. Then, parallel performance analysis for the existing simultaneous block orthogonal matching pursuit (S-BOMP) and the two proposed S-BOLS algorithms is developed. It indicates that under the conditions based on the mutual incoherence property (MIP) and the decaying magnitude structure of the nonzero blocks of the signal, the algorithms select all the significant blocks before possibly choosing incorrect ones. In addition, we further consider the problem of sufficient data volume for reliable recovery, and provide its MIP-based bounds in closed-form. These results together highlight the key role of the block characteristic in addressing the weak-sparse issue, i.e., the scenario where the overall sparsity is too large. The derived theoretical results are also universally valid for conventional block-greedy algorithms and non-block algorithms by setting the number of measurement vectors and the block length to 1, respectively.Comment: This work has been submitted to the IEEE for possible publicatio

    Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings

    Get PDF
    We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition.Comment: 31 page

    Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit

    Get PDF
    This paper demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with mm nonzero entries in dimension dd given rmO(mlnd) {rm O}(m ln d) random linear measurements of that signal. This is a massive improvement over previous results, which require rmO(m2){rm O}(m^{2}) measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems

    Recovery of Sparse Signals Using Multiple Orthogonal Least Squares

    Full text link
    We study the problem of recovering sparse signals from compressed linear measurements. This problem, often referred to as sparse recovery or sparse reconstruction, has generated a great deal of interest in recent years. To recover the sparse signals, we propose a new method called multiple orthogonal least squares (MOLS), which extends the well-known orthogonal least squares (OLS) algorithm by allowing multiple LL indices to be chosen per iteration. Owing to inclusion of multiple support indices in each selection, the MOLS algorithm converges in much fewer iterations and improves the computational efficiency over the conventional OLS algorithm. Theoretical analysis shows that MOLS (L>1L > 1) performs exact recovery of all KK-sparse signals within KK iterations if the measurement matrix satisfies the restricted isometry property (RIP) with isometry constant δLK<LK+2L.\delta_{LK} < \frac{\sqrt{L}}{\sqrt{K} + 2 \sqrt{L}}. The recovery performance of MOLS in the noisy scenario is also studied. It is shown that stable recovery of sparse signals can be achieved with the MOLS algorithm when the signal-to-noise ratio (SNR) scales linearly with the sparsity level of input signals

    Compressive Sensing Theory for Optical Systems Described by a Continuous Model

    Full text link
    A brief survey of the author and collaborators' work in compressive sensing applications to continuous imaging models.Comment: Chapter 3 of "Optical Compressive Imaging" edited by Adrian Stern published by Taylor & Francis 201

    TV-min and Greedy Pursuit for Constrained Joint Sparsity and Application to Inverse Scattering

    Full text link
    This paper proposes a general framework for compressed sensing of constrained joint sparsity (CJS) which includes total variation minimization (TV-min) as an example. TV- and 2-norm error bounds, independent of the ambient dimension, are derived for the CJS version of Basis Pursuit and Orthogonal Matching Pursuit. As an application the results extend Cand`es, Romberg and Tao's proof of exact recovery of piecewise constant objects with noiseless incomplete Fourier data to the case of noisy data.Comment: Mathematics and Mechanics of Complex Systems (2013
    corecore