129,083 research outputs found

    Mixed Information Flow for Cross-domain Sequential Recommendations

    Get PDF
    Cross-domain sequential recommendation is the task of predict the next item that the user is most likely to interact with based on past sequential behavior from multiple domains. One of the key challenges in cross-domain sequential recommendation is to grasp and transfer the flow of information from multiple domains so as to promote recommendations in all domains. Previous studies have investigated the flow of behavioral information by exploring the connection between items from different domains. The flow of knowledge (i.e., the connection between knowledge from different domains) has so far been neglected. In this paper, we propose a mixed information flow network for cross-domain sequential recommendation to consider both the flow of behavioral information and the flow of knowledge by incorporating a behavior transfer unit and a knowledge transfer unit. The proposed mixed information flow network is able to decide when cross-domain information should be used and, if so, which cross-domain information should be used to enrich the sequence representation according to users' current preferences. Extensive experiments conducted on four e-commerce datasets demonstrate that mixed information flow network is able to further improve recommendation performance in different domains by modeling mixed information flow.Comment: 26 pages, 6 figures, TKDD journal, 7 co-author

    Review-Based Domain Disentanglement without Duplicate Users or Contexts for Cross-Domain Recommendation

    Full text link
    A cross-domain recommendation has shown promising results in solving data-sparsity and cold-start problems. Despite such progress, existing methods focus on domain-shareable information (overlapped users or same contexts) for a knowledge transfer, and they fail to generalize well without such requirements. To deal with these problems, we suggest utilizing review texts that are general to most e-commerce systems. Our model (named SER) uses three text analysis modules, guided by a single domain discriminator for disentangled representation learning. Here, we suggest a novel optimization strategy that can enhance the quality of domain disentanglement, and also debilitates detrimental information of a source domain. Also, we extend the encoding network from a single to multiple domains, which has proven to be powerful for review-based recommender systems. Extensive experiments and ablation studies demonstrate that our method is efficient, robust, and scalable compared to the state-of-the-art single and cross-domain recommendation methods

    One Model for All: Large Language Models are Domain-Agnostic Recommendation Systems

    Full text link
    The purpose of sequential recommendation is to utilize the interaction history of a user and predict the next item that the user is most likely to interact with. While data sparsity and cold start are two challenges that most recommender systems are still facing, many efforts are devoted to utilizing data from other domains, called cross-domain methods. However, general cross-domain methods explore the relationship between two domains by designing complex model architecture, making it difficult to scale to multiple domains and utilize more data. Moreover, existing recommendation systems use IDs to represent item, which carry less transferable signals in cross-domain scenarios, and user cross-domain behaviors are also sparse, making it challenging to learn item relationship from different domains. These problems hinder the application of multi-domain methods to sequential recommendation. Recently, large language models (LLMs) exhibit outstanding performance in world knowledge learning from text corpora and general-purpose question answering. Inspired by these successes, we propose a simple but effective framework for domain-agnostic recommendation by exploiting the pre-trained LLMs (namely LLM-Rec). We mix the user's behavior across different domains, and then concatenate the title information of these items into a sentence and model the user's behaviors with a pre-trained language model. We expect that by mixing the user's behaviors across different domains, we can exploit the common knowledge encoded in the pre-trained language model to alleviate the problems of data sparsity and cold start problems. Furthermore, we are curious about whether the latest technical advances in nature language processing (NLP) can transfer to the recommendation scenarios.Comment: 10 pages, 7 figures, 6 table

    Time Interval-enhanced Graph Neural Network for Shared-account Cross-domain Sequential Recommendation

    Full text link
    Shared-account Cross-domain Sequential Recommendation (SCSR) task aims to recommend the next item via leveraging the mixed user behaviors in multiple domains. It is gaining immense research attention as more and more users tend to sign up on different platforms and share accounts with others to access domain-specific services. Existing works on SCSR mainly rely on mining sequential patterns via Recurrent Neural Network (RNN)-based models, which suffer from the following limitations: 1) RNN-based methods overwhelmingly target discovering sequential dependencies in single-user behaviors. They are not expressive enough to capture the relationships among multiple entities in SCSR. 2) All existing methods bridge two domains via knowledge transfer in the latent space, and ignore the explicit cross-domain graph structure. 3) None existing studies consider the time interval information among items, which is essential in the sequential recommendation for characterizing different items and learning discriminative representations for them. In this work, we propose a new graph-based solution, namely TiDA-GCN, to address the above challenges. Specifically, we first link users and items in each domain as a graph. Then, we devise a domain-aware graph convolution network to learn userspecific node representations. To fully account for users' domainspecific preferences on items, two effective attention mechanisms are further developed to selectively guide the message passing process. Moreover, to further enhance item- and account-level representation learning, we incorporate the time interval into the message passing, and design an account-aware self-attention module for learning items' interactive characteristics. Experiments demonstrate the superiority of our proposed method from various aspects.Comment: 15 pages, 6 figure

    UFIN: Universal Feature Interaction Network for Multi-Domain Click-Through Rate Prediction

    Full text link
    Click-Through Rate (CTR) prediction, which aims to estimate the probability of a user clicking on an item, is a key task in online advertising. Numerous existing CTR models concentrate on modeling the feature interactions within a solitary domain, thereby rendering them inadequate for fulfilling the requisites of multi-domain recommendations in real industrial scenarios. Some recent approaches propose intricate architectures to enhance knowledge sharing and augment model training across multiple domains. However, these approaches encounter difficulties when being transferred to new recommendation domains, owing to their reliance on the modeling of ID features (e.g., item id). To address the above issue, we propose the Universal Feature Interaction Network (UFIN) approach for CTR prediction. UFIN exploits textual data to learn universal feature interactions that can be effectively transferred across diverse domains. For learning universal feature representations, we regard the text and feature as two different modalities and propose an encoder-decoder network founded on a Large Language Model (LLM) to enforce the transfer of data from the text modality to the feature modality. Building upon the above foundation, we further develop a mixtureof-experts (MoE) enhanced adaptive feature interaction model to learn transferable collaborative patterns across multiple domains. Furthermore, we propose a multi-domain knowledge distillation framework to enhance feature interaction learning. Based on the above methods, UFIN can effectively bridge the semantic gap to learn common knowledge across various domains, surpassing the constraints of ID-based models. Extensive experiments conducted on eight datasets show the effectiveness of UFIN, in both multidomain and cross-platform settings. Our code is available at https://github.com/RUCAIBox/UFIN

    Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text

    Full text link
    Collaborative filtering (CF) is the key technique for recommender systems (RSs). CF exploits user-item behavior interactions (e.g., clicks) only and hence suffers from the data sparsity issue. One research thread is to integrate auxiliary information such as product reviews and news titles, leading to hybrid filtering methods. Another thread is to transfer knowledge from other source domains such as improving the movie recommendation with the knowledge from the book domain, leading to transfer learning methods. In real-world life, no single service can satisfy a user's all information needs. Thus it motivates us to exploit both auxiliary and source information for RSs in this paper. We propose a novel neural model to smoothly enable Transfer Meeting Hybrid (TMH) methods for cross-domain recommendation with unstructured text in an end-to-end manner. TMH attentively extracts useful content from unstructured text via a memory module and selectively transfers knowledge from a source domain via a transfer network. On two real-world datasets, TMH shows better performance in terms of three ranking metrics by comparing with various baselines. We conduct thorough analyses to understand how the text content and transferred knowledge help the proposed model.Comment: 11 pages, 7 figures, a full version for the WWW 2019 short pape
    corecore