27,848 research outputs found

    Multiple Face Analyses through Adversarial Learning

    Full text link
    This inherent relations among multiple face analysis tasks, such as landmark detection, head pose estimation, gender recognition and face attribute estimation are crucial to boost the performance of each task, but have not been thoroughly explored since typically these multiple face analysis tasks are handled as separate tasks. In this paper, we propose a novel deep multi-task adversarial learning method to localize facial landmark, estimate head pose and recognize gender jointly or estimate multiple face attributes simultaneously through exploring their dependencies from both image representation-level and label-level. Specifically, the proposed method consists of a deep recognition network R and a discriminator D. The deep recognition network is used to learn the shared middle-level image representation and conducts multiple face analysis tasks simultaneously. Through multi-task learning mechanism, the recognition network explores the dependencies among multiple face analysis tasks, such as facial landmark localization, head pose estimation, gender recognition and face attribute estimation from image representation-level. The discriminator is introduced to enforce the distribution of the multiple face analysis tasks to converge to that inherent in the ground-truth labels. During training, the recognizer tries to confuse the discriminator, while the discriminator competes with the recognizer through distinguishing the predicted label combination from the ground-truth one. Though adversarial learning, we explore the dependencies among multiple face analysis tasks from label-level. Experimental results on four benchmark databases, i.e., the AFLW database, the Multi-PIE database, the CelebA database and the LFWA database, demonstrate the effectiveness of the proposed method for multiple face analyses

    A Survey of Deep Facial Attribute Analysis

    Full text link
    Facial attribute analysis has received considerable attention when deep learning techniques made remarkable breakthroughs in this field over the past few years. Deep learning based facial attribute analysis consists of two basic sub-issues: facial attribute estimation (FAE), which recognizes whether facial attributes are present in given images, and facial attribute manipulation (FAM), which synthesizes or removes desired facial attributes. In this paper, we provide a comprehensive survey of deep facial attribute analysis from the perspectives of both estimation and manipulation. First, we summarize a general pipeline that deep facial attribute analysis follows, which comprises two stages: data preprocessing and model construction. Additionally, we introduce the underlying theories of this two-stage pipeline for both FAE and FAM. Second, the datasets and performance metrics commonly used in facial attribute analysis are presented. Third, we create a taxonomy of state-of-the-art methods and review deep FAE and FAM algorithms in detail. Furthermore, several additional facial attribute related issues are introduced, as well as relevant real-world applications. Finally, we discuss possible challenges and promising future research directions.Comment: submitted to International Journal of Computer Vision (IJCV

    Unified Adversarial Invariance

    Full text link
    We present a unified invariance framework for supervised neural networks that can induce independence to nuisance factors of data without using any nuisance annotations, but can additionally use labeled information about biasing factors to force their removal from the latent embedding for making fair predictions. Invariance to nuisance is achieved by learning a split representation of data through competitive training between the prediction task and a reconstruction task coupled with disentanglement, whereas that to biasing factors is brought about by penalizing the network if the latent embedding contains any information about them. We describe an adversarial instantiation of this framework and provide analysis of its working. Our model outperforms previous works at inducing invariance to nuisance factors without using any labeled information about such variables, and achieves state-of-the-art performance at learning independence to biasing factors in fairness settings.Comment: In submission to T-PAMI. Some results updated. arXiv admin note: substantial text overlap with arXiv:1809.1008

    Toward Learning a Unified Many-to-Many Mapping for Diverse Image Translation

    Full text link
    Image-to-image translation, which translates input images to a different domain with a learned one-to-one mapping, has achieved impressive success in recent years. The success of translation mainly relies on the network architecture to reserve the structural information while modify the appearance slightly at the pixel level through adversarial training. Although these networks are able to learn the mapping, the translated images are predictable without exclusion. It is more desirable to diversify them using image-to-image translation by introducing uncertainties, i.e., the generated images hold potential for variations in colors and textures in addition to the general similarity to the input images, and this happens in both the target and source domains. To this end, we propose a novel generative adversarial network (GAN) based model, InjectionGAN, to learn a many-to-many mapping. In this model, the input image is combined with latent variables, which comprise of domain-specific attribute and unspecific random variations. The domain-specific attribute indicates the target domain of the translation, while the unspecific random variations introduce uncertainty into the model. A unified framework is proposed to regroup these two parts and obtain diverse generations in each domain. Extensive experiments demonstrate that the diverse generations have high quality for the challenging image-to-image translation tasks where no pairing information of the training dataset exits. Both quantitative and qualitative results prove the superior performance of InjectionGAN over the state-of-the-art approaches

    Attribute-Guided Sketch Generation

    Full text link
    Facial attributes are important since they provide a detailed description and determine the visual appearance of human faces. In this paper, we aim at converting a face image to a sketch while simultaneously generating facial attributes. To this end, we propose a novel Attribute-Guided Sketch Generative Adversarial Network (ASGAN) which is an end-to-end framework and contains two pairs of generators and discriminators, one of which is used to generate faces with attributes while the other one is employed for image-to-sketch translation. The two generators form a W-shaped network (W-net) and they are trained jointly with a weight-sharing constraint. Additionally, we also propose two novel discriminators, the residual one focusing on attribute generation and the triplex one helping to generate realistic looking sketches. To validate our model, we have created a new large dataset with 8,804 images, named the Attribute Face Photo & Sketch (AFPS) dataset which is the first dataset containing attributes associated to face sketch images. The experimental results demonstrate that the proposed network (i) generates more photo-realistic faces with sharper facial attributes than baselines and (ii) has good generalization capability on different generative tasks.Comment: 7 pages, 6 figures, accepted to FG 201

    Semantic Adversarial Attacks: Parametric Transformations That Fool Deep Classifiers

    Full text link
    Deep neural networks have been shown to exhibit an intriguing vulnerability to adversarial input images corrupted with imperceptible perturbations. However, the majority of adversarial attacks assume global, fine-grained control over the image pixel space. In this paper, we consider a different setting: what happens if the adversary could only alter specific attributes of the input image? These would generate inputs that might be perceptibly different, but still natural-looking and enough to fool a classifier. We propose a novel approach to generate such `semantic' adversarial examples by optimizing a particular adversarial loss over the range-space of a parametric conditional generative model. We demonstrate implementations of our attacks on binary classifiers trained on face images, and show that such natural-looking semantic adversarial examples exist. We evaluate the effectiveness of our attack on synthetic and real data, and present detailed comparisons with existing attack methods. We supplement our empirical results with theoretical bounds that demonstrate the existence of such parametric adversarial examples.Comment: Accepted to International Conference on Computer Vision, (ICCV) 201

    Geometry-Contrastive GAN for Facial Expression Transfer

    Full text link
    In this paper, we propose a Geometry-Contrastive Generative Adversarial Network (GC-GAN) for transferring continuous emotions across different subjects. Given an input face with certain emotion and a target facial expression from another subject, GC-GAN can generate an identity-preserving face with the target expression. Geometry information is introduced into cGANs as continuous conditions to guide the generation of facial expressions. In order to handle the misalignment across different subjects or emotions, contrastive learning is used to transform geometry manifold into an embedded semantic manifold of facial expressions. Therefore, the embedded geometry is injected into the latent space of GANs and control the emotion generation effectively. Experimental results demonstrate that our proposed method can be applied in facial expression transfer even there exist big differences in facial shapes and expressions between different subjects

    Deep adversarial neural decoding

    Full text link
    Here, we present a novel approach to solve the problem of reconstructing perceived stimuli from brain responses by combining probabilistic inference with deep learning. Our approach first inverts the linear transformation from latent features to brain responses with maximum a posteriori estimation and then inverts the nonlinear transformation from perceived stimuli to latent features with adversarial training of convolutional neural networks. We test our approach with a functional magnetic resonance imaging experiment and show that it can generate state-of-the-art reconstructions of perceived faces from brain activations.Comment: Added appendix and updated figure

    Physical Adversarial Textures that Fool Visual Object Tracking

    Full text link
    We present a system for generating inconspicuous-looking textures that, when displayed in the physical world as digital or printed posters, cause visual object tracking systems to become confused. For instance, as a target being tracked by a robot's camera moves in front of such a poster, our generated texture makes the tracker lock onto it and allows the target to evade. This work aims to fool seldom-targeted regression tasks, and in particular compares diverse optimization strategies: non-targeted, targeted, and a new family of guided adversarial losses. While we use the Expectation Over Transformation (EOT) algorithm to generate physical adversaries that fool tracking models when imaged under diverse conditions, we compare the impacts of different conditioning variables, including viewpoint, lighting, and appearances, to find practical attack setups with high resulting adversarial strength and convergence speed. We further showcase textures optimized solely using simulated scenes can confuse real-world tracking systems.Comment: Accepted to the International Conference on Computer Vision (ICCV) 201

    Learning Continuous Face Age Progression: A Pyramid of GANs

    Full text link
    The two underlying requirements of face age progression, i.e. aging accuracy and identity permanence, are not well studied in the literature. This paper presents a novel generative adversarial network based approach to address the issues in a coupled manner. It separately models the constraints for the intrinsic subject-specific characteristics and the age-specific facial changes with respect to the elapsed time, ensuring that the generated faces present desired aging effects while simultaneously keeping personalized properties stable. To ensure photo-realistic facial details, high-level age-specific features conveyed by the synthesized face are estimated by a pyramidal adversarial discriminator at multiple scales, which simulates the aging effects with finer details. Further, an adversarial learning scheme is introduced to simultaneously train a single generator and multiple parallel discriminators, resulting in smooth continuous face aging sequences. The proposed method is applicable even in the presence of variations in pose, expression, makeup, etc., achieving remarkably vivid aging effects. Quantitative evaluations by a COTS face recognition system demonstrate that the target age distributions are accurately recovered, and 99.88% and 99.98% age progressed faces can be correctly verified at 0.001% FAR after age transformations of approximately 28 and 23 years elapsed time on the MORPH and CACD databases, respectively. Both visual and quantitative assessments show that the approach advances the state-of-the-art.Comment: arXiv admin note: substantial text overlap with arXiv:1711.1035
    • …
    corecore