3 research outputs found

    Extending Multi-Object Tracking systems to better exploit appearance and 3D information

    Full text link
    Tracking multiple objects in real time is essential for a variety of real-world applications, with self-driving industry being at the foremost. This work involves exploiting temporally varying appearance and motion information for tracking. Siamese networks have recently become highly successful at appearance based single object tracking and Recurrent Neural Networks have started dominating both motion and appearance based tracking. Our work focuses on combining Siamese networks and RNNs to exploit appearance and motion information respectively to build a joint system capable of real time multi-object tracking. We further explore heuristics based constraints for tracking in the Birds Eye View Space for efficiently exploiting 3D information as a constrained optimization problem for track prediction.Comment: 7 page

    Beyond Background-Aware Correlation Filters: Adaptive Context Modeling by Hand-Crafted and Deep RGB Features for Visual Tracking

    Full text link
    In recent years, the background-aware correlation filters have achie-ved a lot of research interest in the visual target tracking. However, these methods cannot suitably model the target appearance due to the exploitation of hand-crafted features. On the other hand, the recent deep learning-based visual tracking methods have provided a competitive performance along with extensive computations. In this paper, an adaptive background-aware correlation filter-based tracker is proposed that effectively models the target appearance by using either the histogram of oriented gradients (HOG) or convolutional neural network (CNN) feature maps. The proposed method exploits the fast 2D non-maximum suppression (NMS) algorithm and the semantic information comparison to detect challenging situations. When the HOG-based response map is not reliable, or the context region has a low semantic similarity with prior regions, the proposed method constructs the CNN context model to improve the target region estimation. Furthermore, the rejection option allows the proposed method to update the CNN context model only on valid regions. Comprehensive experimental results demonstrate that the proposed adaptive method clearly outperforms the accuracy and robustness of visual target tracking compared to the state-of-the-art methods on the OTB-50, OTB-100, TC-128, UAV-123, and VOT-2015 datasets.Comment: To be appeared in Multimedia Tools and Applications, Springer, 202

    AAA: Adaptive Aggregation of Arbitrary Online Trackers with Theoretical Performance Guarantee

    Full text link
    For visual object tracking, it is difficult to realize an almighty online tracker due to the huge variations of target appearance depending on an image sequence. This paper proposes an online tracking method that adaptively aggregates arbitrary multiple online trackers. The performance of the proposed method is theoretically guaranteed to be comparable to that of the best tracker for any image sequence, although the best expert is unknown during tracking. The experimental study on the large variations of benchmark datasets and aggregated trackers demonstrates that the proposed method can achieve state-of-the-art performance. The code is available at https://github.com/songheony/AAA-journal
    corecore