119,535 research outputs found
Analysis of Serial Search Based Code Acquisition in the Multiple Transmit/Multiple Receive Antenna Aided DS-CDMA Downlink,
AbstractâIn this paper, we investigate the serial-search-based initial code-acquisition performance of direct-sequence code division multiple access (DS-CDMA) employing multiple transmit/multiple receive antennas when communicating over uncorrelated Rayleigh channels. We characterize the associated performance trends as a function of the number of antennas. It is demonstrated that, in contrast to our expectation, the achievable correctdetection probability degrades in our typical target operational Ec/I0 range as the number of transmit antennas is increased. When maintaining a given total transmit power, our findings suggest that increasing the number of transmit antennas results in the combination of the low-energy noise-contaminated signals of the transmit antennas, which ultimately increases the mean acquisition time (MAT). However, it is extremely undesirable to increase theMAT when the system is capable of attaining its target bit-error-ratio performance at reduced signal-power levels, as a benefit of employing multiple transmit antennas. Index TermsâCode acquisition, direct-sequence code division multiple access (DS-CDMA), multiple transmit/multiple receive antennas (MTMR), serial search
Reconfigurable Antennas in mmWave MIMO Systems
The key obstacle to achieving the full potential of the millimeter wave
(mmWave) band has been the poor propagation characteristics of wireless signals
in this band. One approach to overcome this issue is to use antennas that can
support higher gains while providing beam adaptability and diversity, i.e.,
reconfigurable antennas. In this article, we present a new architecture for
mmWave multiple-input multiple-output (MIMO) communications that uses a new
class of reconfigurable antennas. More specifically, the proposed lens-based
antennas can support multiple radiation patterns while using a single radio
frequency chain. Moreover, by using a beam selection network, each antenna beam
can be steered in the desired direction. Further, using the proposed
reconfigurable antenna in a MIMO architecture, we propose a new signal
processing algorithm that uses the additional degrees of freedom provided by
the antennas to overcome propagation issues at mmWave frequencies. Our
simulation results show that the proposed reconfigurable antenna MIMO
architecture significantly enhances the performance of mmWave communication
systems
Performance of multiple-input multiple-output wireless communications systems using distributed antennas
In this contribution we propose and investigate a multiple-input multiple-output (MIMO) wireless communications system, where multiple receive antennas are distributed in the area covered by a cellular cell and connected with the base-station (BS). We first analyze the total received power by the BS through the distributed antennas, when assuming that the mobile's signal is transmitted over lognormal shadowed Rayleigh fading channels. Then, the outage probability of the distributed antenna MIMO systems is investigated, when considering various antenna distribution patterns. Furthermore, space-time coding at the mobile transmitter is considered for enhancing the outage performance of the distributed antenna MIMO system. Our study and simulation results show that the outage performance of a distributed antenna MIMO system can be significantly improved, when either increasing the number of distributed receive antennas or increasing the number of mobile transmit antennas
Non-Coherent Code Acquisition in the Multiple Transmit/Multiple Receive Antenna Aided Single- and Multi-Carrier DS-CDMA Downlink
We analyse the characteristics of the Non-Coherent (NC) Multiple Transmit/Multiple Receive (MTMR) antenna aided Multi-Carrier (MC) DS-CDMA downlink employing a serial search based acquisition scheme, when communicating over spatially uncorrelated Rayleigh channels. The associated Mean Acquisition Time (MAT) performance trends are characterised as a function of both the number of antennas and that of the number of subcarriers. It is shown that the employment of both multiple transmit antennas and multiple subcarriers is typically detrimental in terms of the achievable NC acquisition performance, while that obtained by exploiting multiple receive antennas is always beneficial, regardless whether single-path or multi-path scenarios are considered. Based on our results justified by information theoretic considerations, our acquisition design guidelines are applicable to diverse NC MTMR antenna aided scenarios. Index TermsâMC-DS-CDMA, non-coherent, transmit/receive/ frequency diversity
Distributed Detection over Fading MACs with Multiple Antennas at the Fusion Center
A distributed detection problem over fading Gaussian multiple-access channels
is considered. Sensors observe a phenomenon and transmit their observations to
a fusion center using the amplify and forward scheme. The fusion center has
multiple antennas with different channel models considered between the sensors
and the fusion center, and different cases of channel state information are
assumed at the sensors. The performance is evaluated in terms of the error
exponent for each of these cases, where the effect of multiple antennas at the
fusion center is studied. It is shown that for zero-mean channels between the
sensors and the fusion center when there is no channel information at the
sensors, arbitrarily large gains in the error exponent can be obtained with
sufficient increase in the number of antennas at the fusion center. In stark
contrast, when there is channel information at the sensors, the gain in error
exponent due to having multiple antennas at the fusion center is shown to be no
more than a factor of (8/pi) for Rayleigh fading channels between the sensors
and the fusion center, independent of the number of antennas at the fusion
center, or correlation among noise samples across sensors. Scaling laws for
such gains are also provided when both sensors and antennas are increased
simultaneously. Simple practical schemes and a numerical method using
semidefinite relaxation techniques are presented that utilize the limited
possible gains available. Simulations are used to establish the accuracy of the
results.Comment: 21 pages, 9 figures, submitted to the IEEE Transactions on Signal
Processin
Analysis of Serial Search Based Code Acquisition in Multiple Transmit Antenna Aided DS-CDMA Downlink
In this contribution we investigate the serial search based initial code acquisition performance of DSCDMA employing multiple transmit antennas both with and without Post-Detection Integration (PDI), when communicating over uncorrelated Rayleigh channels. We characterise the associated performance trends as a function of the number of transmit antennas. It is demonstrated that in contrast to our expectation, the achievable correct detection probability PD degrades at low c o E /I values, as the number of transmit antennas is increased. It is extremely undesirable to degrade the achievable acquisition performance, when the system is capable of attaining its target bit error rate performance at reduced SINR values, as a benefit of employing multiple transmit antennas. Our future research will focus on the study of designing iterative turbo-like acquisition schemes designed for MIMO systems
Millimeter Wave Communications with Reconfigurable Antennas
The highly sparse nature of propagation channels and the restricted use of
radio frequency (RF) chains at transceivers limit the performance of millimeter
wave (mmWave) multiple-input multiple-output (MIMO) systems. Introducing
reconfigurable antennas to mmWave can offer an additional degree of freedom on
designing mmWave MIMO systems. This paper provides a theoretical framework for
studying the mmWave MIMO with reconfigurable antennas. We present an
architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital
beamformers and reconfigurable antennas at both the transmitter and the
receiver. We show that employing reconfigurable antennas can provide throughput
gain for the mmWave MIMO. We derive the expression for the average throughput
gain of using reconfigurable antennas, and further simplify the expression by
considering the case of large number of reconfiguration states. In addition, we
propose a low-complexity algorithm for the reconfiguration state and beam
selection, which achieves nearly the same throughput performance as the optimal
selection of reconfiguration state and beams by exhaustive search.Comment: presented at IEEE ICC 201
- âŠ