30,155 research outputs found
BCB Based Packaging for Low Actuation Voltage RF MEMS Devices
This paper outlines the issues related to RF MEMS packaging and low actuation
voltage. An original approach is presented concerning the modeling of
capacitive contacts using multiphysics simulation and advanced
characterization. A similar approach is used concerning packaging development
where multi-physics simulations are used to optimize the process. A devoted
package architecture is proposed featuring very low loss at microwave range
Multiphysics simulations of collisionless plasmas
Collisionless plasmas, mostly present in astrophysical and space
environments, often require a kinetic treatment as given by the Vlasov
equation. Unfortunately, the six-dimensional Vlasov equation can only be solved
on very small parts of the considered spatial domain. However, in some cases,
e.g. magnetic reconnection, it is sufficient to solve the Vlasov equation in a
localized domain and solve the remaining domain by appropriate fluid models. In
this paper, we describe a hierarchical treatment of collisionless plasmas in
the following way. On the finest level of description, the Vlasov equation is
solved both for ions and electrons. The next courser description treats
electrons with a 10-moment fluid model incorporating a simplified treatment of
Landau damping. At the boundary between the electron kinetic and fluid region,
the central question is how the fluid moments influence the electron
distribution function. On the next coarser level of description the ions are
treated by an 10-moment fluid model as well. It may turn out that in some
spatial regions far away from the reconnection zone the temperature tensor in
the 10-moment description is nearly isotopic. In this case it is even possible
to switch to a 5-moment description. This change can be done separately for
ions and electrons. To test this multiphysics approach, we apply this full
physics-adaptive simulations to the Geospace Environmental Modeling (GEM)
challenge of magnetic reconnection.Comment: 13 pages, 5 figure
A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag
Extensions of the basic micromagnetic model that include effects such as spin-current interaction, diffusion of thermal energy or anisotropic magnetoresistance are often studied by performing simulations that use case-specific ad-hoc extensions of widely used software packages such as OOMMF or Magpar. We present the novel software framework 'Nmag' that handles specifications of micromagnetic systems at a sufficiently abstract level to enable users with little programming experience to automatically translate a description of a large class of dynamical multifield equations plus a description of the system's geometry into a working simulation. Conceptually, this is a step towards a higher-level abstract notation for classical multifield mutliphysics simulations, similar to the change from assembly language to a higher level human-and-machine-readable formula notation for mathematical terms (FORTRAN) half a century ago. We demonstrate the capability of this approach through two examples, showing 1) a reduced dimensionality model coupling two copies of the micromagnetic sector and 2) the computation of a spatial current density distribution for anisotropic magnetoresistance (AMR). For cross-wise validation purposes, we also show how Nmag compares to the OOMMF and Magpar packages on a selected micromagnetic toy system. We furthermore, briefly discuss the limiations of our framework and related conceptual questions
Research and Education in Computational Science and Engineering
Over the past two decades the field of computational science and engineering
(CSE) has penetrated both basic and applied research in academia, industry, and
laboratories to advance discovery, optimize systems, support decision-makers,
and educate the scientific and engineering workforce. Informed by centuries of
theory and experiment, CSE performs computational experiments to answer
questions that neither theory nor experiment alone is equipped to answer. CSE
provides scientists and engineers of all persuasions with algorithmic
inventions and software systems that transcend disciplines and scales. Carried
on a wave of digital technology, CSE brings the power of parallelism to bear on
troves of data. Mathematics-based advanced computing has become a prevalent
means of discovery and innovation in essentially all areas of science,
engineering, technology, and society; and the CSE community is at the core of
this transformation. However, a combination of disruptive
developments---including the architectural complexity of extreme-scale
computing, the data revolution that engulfs the planet, and the specialization
required to follow the applications to new frontiers---is redefining the scope
and reach of the CSE endeavor. This report describes the rapid expansion of CSE
and the challenges to sustaining its bold advances. The report also presents
strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie
Mathematical modeling and numerical simulation of a bioreactor landfill using Feel++
In this paper, we propose a mathematical model to describe the functioning of
a bioreactor landfill, that is a waste management facility in which
biodegradable waste is used to generate methane. The simulation of a bioreactor
landfill is a very complex multiphysics problem in which bacteria catalyze a
chemical reaction that starting from organic carbon leads to the production of
methane, carbon dioxide and water. The resulting model features a heat equation
coupled with a non-linear reaction equation describing the chemical phenomena
under analysis and several advection and advection-diffusion equations modeling
multiphase flows inside a porous environment representing the biodegradable
waste. A framework for the approximation of the model is implemented using
Feel++, a C++ open-source library to solve Partial Differential Equations. Some
heuristic considerations on the quantitative values of the parameters in the
model are discussed and preliminary numerical simulations are presented
- …
