36 research outputs found

    Multimodal diff-hash

    Full text link
    Many applications require comparing multimodal data with different structure and dimensionality that cannot be compared directly. Recently, there has been increasing interest in methods for learning and efficiently representing such multimodal similarity. In this paper, we present a simple algorithm for multimodal similarity-preserving hashing, trying to map multimodal data into the Hamming space while preserving the intra- and inter-modal similarities. We show that our method significantly outperforms the state-of-the-art method in the field

    Random Forests Can Hash

    Full text link
    Hash codes are a very efficient data representation needed to be able to cope with the ever growing amounts of data. We introduce a random forest semantic hashing scheme with information-theoretic code aggregation, showing for the first time how random forest, a technique that together with deep learning have shown spectacular results in classification, can also be extended to large-scale retrieval. Traditional random forest fails to enforce the consistency of hashes generated from each tree for the same class data, i.e., to preserve the underlying similarity, and it also lacks a principled way for code aggregation across trees. We start with a simple hashing scheme, where independently trained random trees in a forest are acting as hashing functions. We the propose a subspace model as the splitting function, and show that it enforces the hash consistency in a tree for data from the same class. We also introduce an information-theoretic approach for aggregating codes of individual trees into a single hash code, producing a near-optimal unique hash for each class. Experiments on large-scale public datasets are presented, showing that the proposed approach significantly outperforms state-of-the-art hashing methods for retrieval tasks

    Shared Predictive Cross-Modal Deep Quantization

    Full text link
    With explosive growth of data volume and ever-increasing diversity of data modalities, cross-modal similarity search, which conducts nearest neighbor search across different modalities, has been attracting increasing interest. This paper presents a deep compact code learning solution for efficient cross-modal similarity search. Many recent studies have proven that quantization-based approaches perform generally better than hashing-based approaches on single-modal similarity search. In this paper, we propose a deep quantization approach, which is among the early attempts of leveraging deep neural networks into quantization-based cross-modal similarity search. Our approach, dubbed shared predictive deep quantization (SPDQ), explicitly formulates a shared subspace across different modalities and two private subspaces for individual modalities, and representations in the shared subspace and the private subspaces are learned simultaneously by embedding them to a reproducing kernel Hilbert space, where the mean embedding of different modality distributions can be explicitly compared. In addition, in the shared subspace, a quantizer is learned to produce the semantics preserving compact codes with the help of label alignment. Thanks to this novel network architecture in cooperation with supervised quantization training, SPDQ can preserve intramodal and intermodal similarities as much as possible and greatly reduce quantization error. Experiments on two popular benchmarks corroborate that our approach outperforms state-of-the-art methods

    A New Evaluation Protocol and Benchmarking Results for Extendable Cross-media Retrieval

    Full text link
    This paper proposes a new evaluation protocol for cross-media retrieval which better fits the real-word applications. Both image-text and text-image retrieval modes are considered. Traditionally, class labels in the training and testing sets are identical. That is, it is usually assumed that the query falls into some pre-defined classes. However, in practice, the content of a query image/text may vary extensively, and the retrieval system does not necessarily know in advance the class label of a query. Considering the inconsistency between the real-world applications and laboratory assumptions, we think that the existing protocol that works under identical train/test classes can be modified and improved. This work is dedicated to addressing this problem by considering the protocol under an extendable scenario, \ie, the training and testing classes do not overlap. We provide extensive benchmarking results obtained by the existing protocol and the proposed new protocol on several commonly used datasets. We demonstrate a noticeable performance drop when the testing classes are unseen during training. Additionally, a trivial solution, \ie, directly using the predicted class label for cross-media retrieval, is tested. We show that the trivial solution is very competitive in traditional non-extendable retrieval, but becomes less so under the new settings. The train/test split, evaluation code, and benchmarking results are publicly available on our website.Comment: 10 pages, 9 figure

    Heat kernel coupling for multiple graph analysis

    Full text link
    In this paper, we introduce heat kernel coupling (HKC) as a method of constructing multimodal spectral geometry on weighted graphs of different size without vertex-wise bijective correspondence. We show that Laplacian averaging can be derived as a limit case of HKC, and demonstrate its applications on several problems from the manifold learning and pattern recognition domain

    Supervised Matrix Factorization for Cross-Modality Hashing

    Full text link
    Matrix factorization has been recently utilized for the task of multi-modal hashing for cross-modality visual search, where basis functions are learned to map data from different modalities to the same Hamming embedding. In this paper, we propose a novel cross-modality hashing algorithm termed Supervised Matrix Factorization Hashing (SMFH) which tackles the multi-modal hashing problem with a collective non-matrix factorization across the different modalities. In particular, SMFH employs a well-designed binary code learning algorithm to preserve the similarities among multi-modal original features through a graph regularization. At the same time, semantic labels, when available, are incorporated into the learning procedure. We conjecture that all these would facilitate to preserve the most relevant information during the binary quantization process, and hence improve the retrieval accuracy. We demonstrate the superior performance of SMFH on three cross-modality visual search benchmarks, i.e., the PASCAL-Sentence, Wiki, and NUS-WIDE, with quantitative comparison to various state-of-the-art methodsComment: 7 pages, 4 figure

    Understanding Locally Competitive Networks

    Full text link
    Recently proposed neural network activation functions such as rectified linear, maxout, and local winner-take-all have allowed for faster and more effective training of deep neural architectures on large and complex datasets. The common trait among these functions is that they implement local competition between small groups of computational units within a layer, so that only part of the network is activated for any given input pattern. In this paper, we attempt to visualize and understand this self-modularization, and suggest a unified explanation for the beneficial properties of such networks. We also show how our insights can be directly useful for efficiently performing retrieval over large datasets using neural networks.Comment: 9 pages + 2 supplementary, Accepted to ICLR 2015 Conference trac

    Correlation Hashing Network for Efficient Cross-Modal Retrieval

    Full text link
    Hashing is widely applied to approximate nearest neighbor search for large-scale multimodal retrieval with storage and computation efficiency. Cross-modal hashing improves the quality of hash coding by exploiting semantic correlations across different modalities. Existing cross-modal hashing methods first transform data into low-dimensional feature vectors, and then generate binary codes by another separate quantization step. However, suboptimal hash codes may be generated since the quantization error is not explicitly minimized and the feature representation is not jointly optimized with the binary codes. This paper presents a Correlation Hashing Network (CHN) approach to cross-modal hashing, which jointly learns good data representation tailored to hash coding and formally controls the quantization error. The proposed CHN is a hybrid deep architecture that constitutes a convolutional neural network for learning good image representations, a multilayer perception for learning good text representations, two hashing layers for generating compact binary codes, and a structured max-margin loss that integrates all things together to enable learning similarity-preserving and high-quality hash codes. Extensive empirical study shows that CHN yields state of the art cross-modal retrieval performance on standard benchmarks.Comment: 7 page

    Set-to-Set Hashing with Applications in Visual Recognition

    Full text link
    Visual data, such as an image or a sequence of video frames, is often naturally represented as a point set. In this paper, we consider the fundamental problem of finding a nearest set from a collection of sets, to a query set. This problem has obvious applications in large-scale visual retrieval and recognition, and also in applied fields beyond computer vision. One challenge stands out in solving the problem---set representation and measure of similarity. Particularly, the query set and the sets in dataset collection can have varying cardinalities. The training collection is large enough such that linear scan is impractical. We propose a simple representation scheme that encodes both statistical and structural information of the sets. The derived representations are integrated in a kernel framework for flexible similarity measurement. For the query set process, we adopt a learning-to-hash pipeline that turns the kernel representations into hash bits based on simple learners, using multiple kernel learning. Experiments on two visual retrieval datasets show unambiguously that our set-to-set hashing framework outperforms prior methods that do not take the set-to-set search setting.Comment: 9 page

    HashGAN:Attention-aware Deep Adversarial Hashing for Cross Modal Retrieval

    Full text link
    As the rapid growth of multi-modal data, hashing methods for cross-modal retrieval have received considerable attention. Deep-networks-based cross-modal hashing methods are appealing as they can integrate feature learning and hash coding into end-to-end trainable frameworks. However, it is still challenging to find content similarities between different modalities of data due to the heterogeneity gap. To further address this problem, we propose an adversarial hashing network with attention mechanism to enhance the measurement of content similarities by selectively focusing on informative parts of multi-modal data. The proposed new adversarial network, HashGAN, consists of three building blocks: 1) the feature learning module to obtain feature representations, 2) the generative attention module to generate an attention mask, which is used to obtain the attended (foreground) and the unattended (background) feature representations, 3) the discriminative hash coding module to learn hash functions that preserve the similarities between different modalities. In our framework, the generative module and the discriminative module are trained in an adversarial way: the generator is learned to make the discriminator cannot preserve the similarities of multi-modal data w.r.t. the background feature representations, while the discriminator aims to preserve the similarities of multi-modal data w.r.t. both the foreground and the background feature representations. Extensive evaluations on several benchmark datasets demonstrate that the proposed HashGAN brings substantial improvements over other state-of-the-art cross-modal hashing methods.Comment: 10 pages, 8 figures, 3 table
    corecore