6,805 research outputs found

    Non-Volume Preserving-based Feature Fusion Approach to Group-Level Expression Recognition on Crowd Videos

    Full text link
    Group-level emotion recognition (ER) is a growing research area as the demands for assessing crowds of all sizes is becoming an interest in both the security arena as well as social media. This work extends the earlier ER investigations, which focused on either group-level ER on single images or within a video, by fully investigating group-level expression recognition on crowd videos. In this paper, we propose an effective deep feature level fusion mechanism to model the spatial-temporal information in the crowd videos. In our approach, the fusing process is performed on deep feature domain by a generative probabilistic model, Non-Volume Preserving Fusion (NVPF), that models spatial information relationship. Furthermore, we extend our proposed spatial NVPF approach to spatial-temporal NVPF approach to learn the temporal information between frames. In order to demonstrate the robustness and effectiveness of each component in the proposed approach, three experiments were conducted: (i) evaluation on AffectNet database to benchmark the proposed EmoNet for recognizing facial expression; (ii) evaluation on EmotiW2018 to benchmark the proposed deep feature level fusion mechanism NVPF; and, (iii) examine the proposed TNVPF on an innovative Group-level Emotion on Crowd Videos (GECV) dataset composed of 627 videos collected from publicly available sources. GECV dataset is a collection of videos containing crowds of people. Each video is labeled with emotion categories at three levels: individual faces, group of people and the entire video frame.Comment: Under review at Patter Recognitio

    A Comprehensive Survey on Cross-modal Retrieval

    Full text link
    In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. Various methods have been proposed to deal with such a problem. In this paper, we first review a number of representative methods for cross-modal retrieval and classify them into two main groups: 1) real-valued representation learning, and 2) binary representation learning. Real-valued representation learning methods aim to learn real-valued common representations for different modalities of data. To speed up the cross-modal retrieval, a number of binary representation learning methods are proposed to map different modalities of data into a common Hamming space. Then, we introduce several multimodal datasets in the community, and show the experimental results on two commonly used multimodal datasets. The comparison reveals the characteristic of different kinds of cross-modal retrieval methods, which is expected to benefit both practical applications and future research. Finally, we discuss open problems and future research directions.Comment: 20 pages, 11 figures, 9 table

    Multi-view Laplacian Eigenmaps Based on Bag-of-Neighbors For RGBD Human Emotion Recognition

    Full text link
    Human emotion recognition is an important direction in the field of biometric and information forensics. However, most existing human emotion research are based on the single RGB view. In this paper, we introduce a RGBD video-emotion dataset and a RGBD face-emotion dataset for research. To our best knowledge, this may be the first RGBD video-emotion dataset. We propose a new supervised nonlinear multi-view laplacian eigenmaps (MvLE) approach and a multihidden-layer out-of-sample network (MHON) for RGB-D humanemotion recognition. To get better representations of RGB view and depth view, MvLE is used to map the training set of both views from original space into the common subspace. As RGB view and depth view lie in different spaces, a new distance metric bag of neighbors (BON) used in MvLE can get the similar distributions of the two views. Finally, MHON is used to get the low-dimensional representations of test data and predict their labels. MvLE can deal with the cases that RGB view and depth view have different size of features, even different number of samples and classes. And our methods can be easily extended to more than two views. The experiment results indicate the effectiveness of our methods over some state-of-art methods

    Privacy-Preserving Deep Inference for Rich User Data on The Cloud

    Full text link
    Deep neural networks are increasingly being used in a variety of machine learning applications applied to rich user data on the cloud. However, this approach introduces a number of privacy and efficiency challenges, as the cloud operator can perform secondary inferences on the available data. Recently, advances in edge processing have paved the way for more efficient, and private, data processing at the source for simple tasks and lighter models, though they remain a challenge for larger, and more complicated models. In this paper, we present a hybrid approach for breaking down large, complex deep models for cooperative, privacy-preserving analytics. We do this by breaking down the popular deep architectures and fine-tune them in a particular way. We then evaluate the privacy benefits of this approach based on the information exposed to the cloud service. We also asses the local inference cost of different layers on a modern handset for mobile applications. Our evaluations show that by using certain kind of fine-tuning and embedding techniques and at a small processing costs, we can greatly reduce the level of information available to unintended tasks applied to the data feature on the cloud, and hence achieving the desired tradeoff between privacy and performance.Comment: arXiv admin note: substantial text overlap with arXiv:1703.0295

    Cross-modal Subspace Learning via Kernel Correlation Maximization and Discriminative Structure Preserving

    Full text link
    The measure between heterogeneous data is still an open problem. Many research works have been developed to learn a common subspace where the similarity between different modalities can be calculated directly. However, most of existing works focus on learning a latent subspace but the semantically structural information is not well preserved. Thus, these approaches cannot get desired results. In this paper, we propose a novel framework, termed Cross-modal subspace learning via Kernel correlation maximization and Discriminative structure-preserving (CKD), to solve this problem in two aspects. Firstly, we construct a shared semantic graph to make each modality data preserve the neighbor relationship semantically. Secondly, we introduce the Hilbert-Schmidt Independence Criteria (HSIC) to ensure the consistency between feature-similarity and semantic-similarity of samples. Our model not only considers the inter-modality correlation by maximizing the kernel correlation but also preserves the semantically structural information within each modality. The extensive experiments are performed to evaluate the proposed framework on the three public datasets. The experimental results demonstrated that the proposed CKD is competitive compared with the classic subspace learning methods.Comment: The paper is under consideration at Multimedia Tools and Application

    Learning Two-Branch Neural Networks for Image-Text Matching Tasks

    Full text link
    Image-language matching tasks have recently attracted a lot of attention in the computer vision field. These tasks include image-sentence matching, i.e., given an image query, retrieving relevant sentences and vice versa, and region-phrase matching or visual grounding, i.e., matching a phrase to relevant regions. This paper investigates two-branch neural networks for learning the similarity between these two data modalities. We propose two network structures that produce different output representations. The first one, referred to as an embedding network, learns an explicit shared latent embedding space with a maximum-margin ranking loss and novel neighborhood constraints. Compared to standard triplet sampling, we perform improved neighborhood sampling that takes neighborhood information into consideration while constructing mini-batches. The second network structure, referred to as a similarity network, fuses the two branches via element-wise product and is trained with regression loss to directly predict a similarity score. Extensive experiments show that our networks achieve high accuracies for phrase localization on the Flickr30K Entities dataset and for bi-directional image-sentence retrieval on Flickr30K and MSCOCO datasets.Comment: accepted version in TPAMI 201

    Mask-Guided Portrait Editing with Conditional GANs

    Full text link
    Portrait editing is a popular subject in photo manipulation. The Generative Adversarial Network (GAN) advances the generating of realistic faces and allows more face editing. In this paper, we argue about three issues in existing techniques: diversity, quality, and controllability for portrait synthesis and editing. To address these issues, we propose a novel end-to-end learning framework that leverages conditional GANs guided by provided face masks for generating faces. The framework learns feature embeddings for every face component (e.g., mouth, hair, eye), separately, contributing to better correspondences for image translation, and local face editing. With the mask, our network is available to many applications, like face synthesis driven by mask, face Swap+ (including hair in swapping), and local manipulation. It can also boost the performance of face parsing a bit as an option of data augmentation.Comment: To appear in CVPR201

    Multimodal Deep Network Embedding with Integrated Structure and Attribute Information

    Full text link
    Network embedding is the process of learning low-dimensional representations for nodes in a network, while preserving node features. Existing studies only leverage network structure information and focus on preserving structural features. However, nodes in real-world networks often have a rich set of attributes providing extra semantic information. It has been demonstrated that both structural and attribute features are important for network analysis tasks. To preserve both features, we investigate the problem of integrating structure and attribute information to perform network embedding and propose a Multimodal Deep Network Embedding (MDNE) method. MDNE captures the non-linear network structures and the complex interactions among structures and attributes, using a deep model consisting of multiple layers of non-linear functions. Since structures and attributes are two different types of information, a multimodal learning method is adopted to pre-process them and help the model to better capture the correlations between node structure and attribute information. We employ both structural proximity and attribute proximity in the loss function to preserve the respective features and the representations are obtained by minimizing the loss function. Results of extensive experiments on four real-world datasets show that the proposed method performs significantly better than baselines on a variety of tasks, which demonstrate the effectiveness and generality of our method.Comment: 15 pages, 10 figure

    TransGaGa: Geometry-Aware Unsupervised Image-to-Image Translation

    Full text link
    Unsupervised image-to-image translation aims at learning a mapping between two visual domains. However, learning a translation across large geometry variations always ends up with failure. In this work, we present a novel disentangle-and-translate framework to tackle the complex objects image-to-image translation task. Instead of learning the mapping on the image space directly, we disentangle image space into a Cartesian product of the appearance and the geometry latent spaces. Specifically, we first introduce a geometry prior loss and a conditional VAE loss to encourage the network to learn independent but complementary representations. The translation is then built on appearance and geometry space separately. Extensive experiments demonstrate the superior performance of our method to other state-of-the-art approaches, especially in the challenging near-rigid and non-rigid objects translation tasks. In addition, by taking different exemplars as the appearance references, our method also supports multimodal translation. Project page: https://wywu.github.io/projects/TGaGa/TGaGa.htmlComment: Accepted to CVPR 2019. Project page: https://wywu.github.io/projects/TGaGa/TGaGa.htm

    Learning Structured Semantic Embeddings for Visual Recognition

    Full text link
    Numerous embedding models have been recently explored to incorporate semantic knowledge into visual recognition. Existing methods typically focus on minimizing the distance between the corresponding images and texts in the embedding space but do not explicitly optimize the underlying structure. Our key observation is that modeling the pairwise image-image relationship improves the discrimination ability of the embedding model. In this paper, we propose the structured discriminative and difference constraints to learn visual-semantic embeddings. First, we exploit the discriminative constraints to capture the intra- and inter-class relationships of image embeddings. The discriminative constraints encourage separability for image instances of different classes. Second, we align the difference vector between a pair of image embeddings with that of the corresponding word embeddings. The difference constraints help regularize image embeddings to preserve the semantic relationships among word embeddings. Extensive evaluations demonstrate the effectiveness of the proposed structured embeddings for single-label classification, multi-label classification, and zero-shot recognition.Comment: 9 pages, 6 figures, 5 tables, conferenc
    corecore