728 research outputs found

    Generalizing Supervised Deep Learning MRI Reconstruction to Multiple and Unseen Contrasts using Meta-Learning Hypernetworks

    Full text link
    Meta-learning has recently been an emerging data-efficient learning technique for various medical imaging operations and has helped advance contemporary deep learning models. Furthermore, meta-learning enhances the knowledge generalization of the imaging tasks by learning both shared and discriminative weights for various configurations of imaging tasks. However, existing meta-learning models attempt to learn a single set of weight initializations of a neural network that might be restrictive for multimodal data. This work aims to develop a multimodal meta-learning model for image reconstruction, which augments meta-learning with evolutionary capabilities to encompass diverse acquisition settings of multimodal data. Our proposed model called KM-MAML (Kernel Modulation-based Multimodal Meta-Learning), has hypernetworks that evolve to generate mode-specific weights. These weights provide the mode-specific inductive bias for multiple modes by re-calibrating each kernel of the base network for image reconstruction via a low-rank kernel modulation operation. We incorporate gradient-based meta-learning (GBML) in the contextual space to update the weights of the hypernetworks for different modes. The hypernetworks and the reconstruction network in the GBML setting provide discriminative mode-specific features and low-level image features, respectively. Experiments on multi-contrast MRI reconstruction show that our model, (i) exhibits superior reconstruction performance over joint training, other meta-learning methods, and context-specific MRI reconstruction methods, and (ii) better adaptation capabilities with improvement margins of 0.5 dB in PSNR and 0.01 in SSIM. Besides, a representation analysis with U-Net shows that kernel modulation infuses 80% of mode-specific representation changes in the high-resolution layers. Our source code is available at https://github.com/sriprabhar/KM-MAML/.Comment: Accepted for publication in Elsevier Applied Soft Computing Journal, 36 pages, 18 figure

    Multi-Modal Fusion by Meta-Initialization

    Full text link
    When experience is scarce, models may have insufficient information to adapt to a new task. In this case, auxiliary information - such as a textual description of the task - can enable improved task inference and adaptation. In this work, we propose an extension to the Model-Agnostic Meta-Learning algorithm (MAML), which allows the model to adapt using auxiliary information as well as task experience. Our method, Fusion by Meta-Initialization (FuMI), conditions the model initialization on auxiliary information using a hypernetwork, rather than learning a single, task-agnostic initialization. Furthermore, motivated by the shortcomings of existing multi-modal few-shot learning benchmarks, we constructed iNat-Anim - a large-scale image classification dataset with succinct and visually pertinent textual class descriptions. On iNat-Anim, FuMI significantly outperforms uni-modal baselines such as MAML in the few-shot regime. The code for this project and a dataset exploration tool for iNat-Anim are publicly available at https://github.com/s-a-malik/multi-few .Comment: The first two authors contributed equall

    Entity Aware Modelling: A Survey

    Full text link
    Personalized prediction of responses for individual entities caused by external drivers is vital across many disciplines. Recent machine learning (ML) advances have led to new state-of-the-art response prediction models. Models built at a population level often lead to sub-optimal performance in many personalized prediction settings due to heterogeneity in data across entities (tasks). In personalized prediction, the goal is to incorporate inherent characteristics of different entities to improve prediction performance. In this survey, we focus on the recent developments in the ML community for such entity-aware modeling approaches. ML algorithms often modulate the network using these entity characteristics when they are readily available. However, these entity characteristics are not readily available in many real-world scenarios, and different ML methods have been proposed to infer these characteristics from the data. In this survey, we have organized the current literature on entity-aware modeling based on the availability of these characteristics as well as the amount of training data. We highlight how recent innovations in other disciplines, such as uncertainty quantification, fairness, and knowledge-guided machine learning, can improve entity-aware modeling.Comment: Submitted to IJCAI, Survey Trac

    Learning from Very Few Samples: A Survey

    Full text link
    Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 300+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.Comment: 30 page
    • …
    corecore