6 research outputs found

    Decoding Brain Representations by Multimodal Learning of Neural Activity and Visual Features

    Full text link
    This work presents a novel method of exploring human brain-visual representations, with a view towards replicating these processes in machines. The core idea is to learn plausible computational and biological representations by correlating human neural activity and natural images. Thus, we first propose a model, EEG-ChannelNet, to learn a brain manifold for EEG classification. After verifying that visual information can be extracted from EEG data, we introduce a multimodal approach that uses deep image and EEG encoders, trained in a siamese configuration, for learning a joint manifold that maximizes a compatibility measure between visual features and brain representations. We then carry out image classification and saliency detection on the learned manifold. Performance analyses show that our approach satisfactorily decodes visual information from neural signals. This, in turn, can be used to effectively supervise the training of deep learning models, as demonstrated by the high performance of image classification and saliency detection on out-of-training classes. The obtained results show that the learned brain-visual features lead to improved performance and simultaneously bring deep models more in line with cognitive neuroscience work related to visual perception and attention

    Reciprocal Attention Fusion for Visual Question Answering

    Full text link
    Existing attention mechanisms either attend to local image grid or object level features for Visual Question Answering (VQA). Motivated by the observation that questions can relate to both object instances and their parts, we propose a novel attention mechanism that jointly considers reciprocal relationships between the two levels of visual details. The bottom-up attention thus generated is further coalesced with the top-down information to only focus on the scene elements that are most relevant to a given question. Our design hierarchically fuses multi-modal information i.e., language, object- and gird-level features, through an efficient tensor decomposition scheme. The proposed model improves the state-of-the-art single model performances from 67.9% to 68.2% on VQAv1 and from 65.7% to 67.4% on VQAv2, demonstrating a significant boost.Comment: To appear in the British Machine Vision Conference (BMVC), September 201

    Learning Conditioned Graph Structures for Interpretable Visual Question Answering

    Full text link
    Visual Question answering is a challenging problem requiring a combination of concepts from Computer Vision and Natural Language Processing. Most existing approaches use a two streams strategy, computing image and question features that are consequently merged using a variety of techniques. Nonetheless, very few rely on higher level image representations, which can capture semantic and spatial relationships. In this paper, we propose a novel graph-based approach for Visual Question Answering. Our method combines a graph learner module, which learns a question specific graph representation of the input image, with the recent concept of graph convolutions, aiming to learn image representations that capture question specific interactions. We test our approach on the VQA v2 dataset using a simple baseline architecture enhanced by the proposed graph learner module. We obtain promising results with 66.18% accuracy and demonstrate the interpretability of the proposed method. Code can be found at github.com/aimbrain/vqa-project.Comment: NIPS 2018 (13 pages, 7 figures

    Component Analysis for Visual Question Answering Architectures

    Full text link
    Recent research advances in Computer Vision and Natural Language Processing have introduced novel tasks that are paving the way for solving AI-complete problems. One of those tasks is called Visual Question Answering (VQA). A VQA system must take an image and a free-form, open-ended natural language question about the image, and produce a natural language answer as the output. Such a task has drawn great attention from the scientific community, which generated a plethora of approaches that aim to improve the VQA predictive accuracy. Most of them comprise three major components: (i) independent representation learning of images and questions; (ii) feature fusion so the model can use information from both sources to answer visual questions; and (iii) the generation of the correct answer in natural language. With so many approaches being recently introduced, it became unclear the real contribution of each component for the ultimate performance of the model. The main goal of this paper is to provide a comprehensive analysis regarding the impact of each component in VQA models. Our extensive set of experiments cover both visual and textual elements, as well as the combination of these representations in form of fusion and attention mechanisms. Our major contribution is to identify core components for training VQA models so as to maximize their predictive performance

    Inverse Visual Question Answering: A New Benchmark and VQA Diagnosis Tool

    Full text link
    In recent years, visual question answering (VQA) has become topical. The premise of VQA's significance as a benchmark in AI, is that both the image and textual question need to be well understood and mutually grounded in order to infer the correct answer. However, current VQA models perhaps `understand' less than initially hoped, and instead master the easier task of exploiting cues given away in the question and biases in the answer distribution. In this paper we propose the inverse problem of VQA (iVQA). The iVQA task is to generate a question that corresponds to a given image and answer pair. We propose a variational iVQA model that can generate diverse, grammatically correct and content correlated questions that match the given answer. Based on this model, we show that iVQA is an interesting benchmark for visuo-linguistic understanding, and a more challenging alternative to VQA because an iVQA model needs to understand the image better to be successful. As a second contribution, we show how to use iVQA in a novel reinforcement learning framework to diagnose any existing VQA model by way of exposing its belief set: the set of question-answer pairs that the VQA model would predict true for a given image. This provides a completely new window into what VQA models `believe' about images. We show that existing VQA models have more erroneous beliefs than previously thought, revealing their intrinsic weaknesses. Suggestions are then made on how to address these weaknesses going forward.Comment: arXiv admin note: text overlap with arXiv:1710.0337

    Multimodal Categorization of Crisis Events in Social Media

    Full text link
    Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.Comment: Conference on Computer Vision and Pattern Recognition (CVPR 2020
    corecore