30,721 research outputs found

    Unsupervised Domain Adaptation for Multispectral Pedestrian Detection

    Get PDF
    Multimodal information (e.g., visible and thermal) can generate robust pedestrian detections to facilitate around-the-clock computer vision applications, such as autonomous driving and video surveillance. However, it still remains a crucial challenge to train a reliable detector working well in different multispectral pedestrian datasets without manual annotations. In this paper, we propose a novel unsupervised domain adaptation framework for multispectral pedestrian detection, by iteratively generating pseudo annotations and updating the parameters of our designed multispectral pedestrian detector on target domain. Pseudo annotations are generated using the detector trained on source domain, and then updated by fixing the parameters of detector and minimizing the cross entropy loss without back-propagation. Training labels are generated using the pseudo annotations by considering the characteristics of similarity and complementarity between well-aligned visible and infrared image pairs. The parameters of detector are updated using the generated labels by minimizing our defined multi-detection loss function with back-propagation. The optimal parameters of detector can be obtained after iteratively updating the pseudo annotations and parameters. Experimental results show that our proposed unsupervised multimodal domain adaptation method achieves significantly higher detection performance than the approach without domain adaptation, and is competitive with the supervised multispectral pedestrian detectors

    LRMM: Learning to Recommend with Missing Modalities

    Full text link
    Multimodal learning has shown promising performance in content-based recommendation due to the auxiliary user and item information of multiple modalities such as text and images. However, the problem of incomplete and missing modality is rarely explored and most existing methods fail in learning a recommendation model with missing or corrupted modalities. In this paper, we propose LRMM, a novel framework that mitigates not only the problem of missing modalities but also more generally the cold-start problem of recommender systems. We propose modality dropout (m-drop) and a multimodal sequential autoencoder (m-auto) to learn multimodal representations for complementing and imputing missing modalities. Extensive experiments on real-world Amazon data show that LRMM achieves state-of-the-art performance on rating prediction tasks. More importantly, LRMM is more robust to previous methods in alleviating data-sparsity and the cold-start problem.Comment: 11 pages, EMNLP 201
    • …
    corecore