5,083 research outputs found

    Meetings and Meeting Modeling in Smart Environments

    Get PDF
    In this paper we survey our research on smart meeting rooms and its relevance for augmented reality meeting support and virtual reality generation of meetings in real time or off-line. The research reported here forms part of the European 5th and 6th framework programme projects multi-modal meeting manager (M4) and augmented multi-party interaction (AMI). Both projects aim at building a smart meeting environment that is able to collect multimodal captures of the activities and discussions in a meeting room, with the aim to use this information as input to tools that allow real-time support, browsing, retrieval and summarization of meetings. Our aim is to research (semantic) representations of what takes place during meetings in order to allow generation, e.g. in virtual reality, of meeting activities (discussions, presentations, voting, etc.). Being able to do so also allows us to look at tools that provide support during a meeting and at tools that allow those not able to be physically present during a meeting to take part in a virtual way. This may lead to situations where the differences between real meeting participants, human-controlled virtual participants and (semi-) autonomous virtual participants disappear

    Exploiting `Subjective' Annotations

    Get PDF
    Many interesting phenomena in conversation can only be annotated as a subjective task, requiring interpretative judgements from annotators. This leads to data which is annotated with lower levels of agreement not only due to errors in the annotation, but also due to the differences in how annotators interpret conversations. This paper constitutes an attempt to find out how subjective annotations with a low level of agreement can profitably be used for machine learning purposes. We analyse the (dis)agreements between annotators for two different cases in a multimodal annotated corpus and explicitly relate the results to the way machine-learning algorithms perform on the annotated data. Finally we present two new concepts, namely `subjective entity' classifiers resp. `consensus objective' classifiers, and give recommendations for using subjective data in machine-learning applications.\u

    Follow-up question handling in the IMIX and Ritel systems: A comparative study

    Get PDF
    One of the basic topics of question answering (QA) dialogue systems is how follow-up questions should be interpreted by a QA system. In this paper, we shall discuss our experience with the IMIX and Ritel systems, for both of which a follow-up question handling scheme has been developed, and corpora have been collected. These two systems are each other's opposites in many respects: IMIX is multimodal, non-factoid, black-box QA, while Ritel is speech, factoid, keyword-based QA. Nevertheless, we will show that they are quite comparable, and that it is fruitful to examine the similarities and differences. We shall look at how the systems are composed, and how real, non-expert, users interact with the systems. We shall also provide comparisons with systems from the literature where possible, and indicate where open issues lie and in what areas existing systems may be improved. We conclude that most systems have a common architecture with a set of common subtasks, in particular detecting follow-up questions and finding referents for them. We characterise these tasks using the typical techniques used for performing them, and data from our corpora. We also identify a special type of follow-up question, the discourse question, which is asked when the user is trying to understand an answer, and propose some basic methods for handling it

    A Knowledge-Grounded Multimodal Search-Based Conversational Agent

    Full text link
    Multimodal search-based dialogue is a challenging new task: It extends visually grounded question answering systems into multi-turn conversations with access to an external database. We address this new challenge by learning a neural response generation system from the recently released Multimodal Dialogue (MMD) dataset (Saha et al., 2017). We introduce a knowledge-grounded multimodal conversational model where an encoded knowledge base (KB) representation is appended to the decoder input. Our model substantially outperforms strong baselines in terms of text-based similarity measures (over 9 BLEU points, 3 of which are solely due to the use of additional information from the KB
    corecore