19,170 research outputs found

    Boosting Image Forgery Detection using Resampling Features and Copy-move analysis

    Full text link
    Realistic image forgeries involve a combination of splicing, resampling, cloning, region removal and other methods. While resampling detection algorithms are effective in detecting splicing and resampling, copy-move detection algorithms excel in detecting cloning and region removal. In this paper, we combine these complementary approaches in a way that boosts the overall accuracy of image manipulation detection. We use the copy-move detection method as a pre-filtering step and pass those images that are classified as untampered to a deep learning based resampling detection framework. Experimental results on various datasets including the 2017 NIST Nimble Challenge Evaluation dataset comprising nearly 10,000 pristine and tampered images shows that there is a consistent increase of 8%-10% in detection rates, when copy-move algorithm is combined with different resampling detection algorithms

    Color-decoupled photo response non-uniformity for digital image forensics

    Get PDF
    The last few years have seen the use of photo response non-uniformity noise (PRNU), a unique fingerprint of imaging sensors, in various digital forensic applications such as source device identification, content integrity verification and authentication. However, the use of a colour filter array for capturing only one of the three colour components per pixel introduces colour interpolation noise, while the existing methods for extracting PRNU provide no effective means for addressing this issue. Because the artificial colours obtained through the colour interpolation process is not directly acquired from the scene by physical hardware, we expect that the PRNU extracted from the physical components, which are free from interpolation noise, should be more reliable than that from the artificial channels, which carry interpolation noise. Based on this assumption we propose a Couple-Decoupled PRNU (CD-PRNU) extraction method, which first decomposes each colour channel into 4 sub-images and then extracts the PRNU noise from each sub-image. The PRNU noise patterns of the sub-images are then assembled to get the CD-PRNU. This new method can prevent the interpolation noise from propagating into the physical components, thus improving the accuracy of device identification and image content integrity verification

    Distinguishing Computer-generated Graphics from Natural Images Based on Sensor Pattern Noise and Deep Learning

    Full text link
    Computer-generated graphics (CGs) are images generated by computer software. The~rapid development of computer graphics technologies has made it easier to generate photorealistic computer graphics, and these graphics are quite difficult to distinguish from natural images (NIs) with the naked eye. In this paper, we propose a method based on sensor pattern noise (SPN) and deep learning to distinguish CGs from NIs. Before being fed into our convolutional neural network (CNN)-based model, these images---CGs and NIs---are clipped into image patches. Furthermore, three high-pass filters (HPFs) are used to remove low-frequency signals, which represent the image content. These filters are also used to reveal the residual signal as well as SPN introduced by the digital camera device. Different from the traditional methods of distinguishing CGs from NIs, the proposed method utilizes a five-layer CNN to classify the input image patches. Based on the classification results of the image patches, we deploy a majority vote scheme to obtain the classification results for the full-size images. The~experiments have demonstrated that (1) the proposed method with three HPFs can achieve better results than that with only one HPF or no HPF and that (2) the proposed method with three HPFs achieves 100\% accuracy, although the NIs undergo a JPEG compression with a quality factor of 75.Comment: This paper has been published by Sensors. doi:10.3390/s18041296; Sensors 2018, 18(4), 129

    Aligned and Non-Aligned Double JPEG Detection Using Convolutional Neural Networks

    Full text link
    Due to the wide diffusion of JPEG coding standard, the image forensic community has devoted significant attention to the development of double JPEG (DJPEG) compression detectors through the years. The ability of detecting whether an image has been compressed twice provides paramount information toward image authenticity assessment. Given the trend recently gained by convolutional neural networks (CNN) in many computer vision tasks, in this paper we propose to use CNNs for aligned and non-aligned double JPEG compression detection. In particular, we explore the capability of CNNs to capture DJPEG artifacts directly from images. Results show that the proposed CNN-based detectors achieve good performance even with small size images (i.e., 64x64), outperforming state-of-the-art solutions, especially in the non-aligned case. Besides, good results are also achieved in the commonly-recognized challenging case in which the first quality factor is larger than the second one.Comment: Submitted to Journal of Visual Communication and Image Representation (first submission: March 20, 2017; second submission: August 2, 2017
    corecore