3,956 research outputs found

    Discrete Multi-modal Hashing with Canonical Views for Robust Mobile Landmark Search

    Full text link
    Mobile landmark search (MLS) recently receives increasing attention for its great practical values. However, it still remains unsolved due to two important challenges. One is high bandwidth consumption of query transmission, and the other is the huge visual variations of query images sent from mobile devices. In this paper, we propose a novel hashing scheme, named as canonical view based discrete multi-modal hashing (CV-DMH), to handle these problems via a novel three-stage learning procedure. First, a submodular function is designed to measure visual representativeness and redundancy of a view set. With it, canonical views, which capture key visual appearances of landmark with limited redundancy, are efficiently discovered with an iterative mining strategy. Second, multi-modal sparse coding is applied to transform visual features from multiple modalities into an intermediate representation. It can robustly and adaptively characterize visual contents of varied landmark images with certain canonical views. Finally, compact binary codes are learned on intermediate representation within a tailored discrete binary embedding model which preserves visual relations of images measured with canonical views and removes the involved noises. In this part, we develop a new augmented Lagrangian multiplier (ALM) based optimization method to directly solve the discrete binary codes. We can not only explicitly deal with the discrete constraint, but also consider the bit-uncorrelated constraint and balance constraint together. Experiments on real world landmark datasets demonstrate the superior performance of CV-DMH over several state-of-the-art methods

    Optimized Cartesian KK-Means

    Full text link
    Product quantization-based approaches are effective to encode high-dimensional data points for approximate nearest neighbor search. The space is decomposed into a Cartesian product of low-dimensional subspaces, each of which generates a sub codebook. Data points are encoded as compact binary codes using these sub codebooks, and the distance between two data points can be approximated efficiently from their codes by the precomputed lookup tables. Traditionally, to encode a subvector of a data point in a subspace, only one sub codeword in the corresponding sub codebook is selected, which may impose strict restrictions on the search accuracy. In this paper, we propose a novel approach, named Optimized Cartesian KK-Means (OCKM), to better encode the data points for more accurate approximate nearest neighbor search. In OCKM, multiple sub codewords are used to encode the subvector of a data point in a subspace. Each sub codeword stems from different sub codebooks in each subspace, which are optimally generated with regards to the minimization of the distortion errors. The high-dimensional data point is then encoded as the concatenation of the indices of multiple sub codewords from all the subspaces. This can provide more flexibility and lower distortion errors than traditional methods. Experimental results on the standard real-life datasets demonstrate the superiority over state-of-the-art approaches for approximate nearest neighbor search.Comment: to appear in IEEE TKDE, accepted in Apr. 201
    • …
    corecore