149 research outputs found

    Exploring OCR Capabilities of GPT-4V(ision) : A Quantitative and In-depth Evaluation

    Full text link
    This paper presents a comprehensive evaluation of the Optical Character Recognition (OCR) capabilities of the recently released GPT-4V(ision), a Large Multimodal Model (LMM). We assess the model's performance across a range of OCR tasks, including scene text recognition, handwritten text recognition, handwritten mathematical expression recognition, table structure recognition, and information extraction from visually-rich document. The evaluation reveals that GPT-4V performs well in recognizing and understanding Latin contents, but struggles with multilingual scenarios and complex tasks. Specifically, it showed limitations when dealing with non-Latin languages and complex tasks such as handwriting mathematical expression recognition, table structure recognition, and end-to-end semantic entity recognition and pair extraction from document image. Based on these observations, we affirm the necessity and continued research value of specialized OCR models. In general, despite its versatility in handling diverse OCR tasks, GPT-4V does not outperform existing state-of-the-art OCR models. How to fully utilize pre-trained general-purpose LMMs such as GPT-4V for OCR downstream tasks remains an open problem. The study offers a critical reference for future research in OCR with LMMs. Evaluation pipeline and results are available at https://github.com/SCUT-DLVCLab/GPT-4V_OCR

    Design of an Offline Handwriting Recognition System Tested on the Bangla and Korean Scripts

    Get PDF
    This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for almost any alphabetic writing system. The framework has been rigorously tested for Bangla and demonstrated how it can be transformed to apply to other scripts through experiments on the Korean script whose two-dimensional arrangement of characters makes it a challenge to recognize. The base of this design is a character spotting network which detects the location of different script elements (such as characters, diacritics) from an unsegmented word image. A transcript is formed from the detected classes based on their corresponding location information. This is the first reported lexicon-free offline recognition system for Bangla and achieves a Character Recognition Accuracy (CRA) of 94.8%. This is also one of the most flexible architectures ever presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a powerful technique of autonomous tagging was developed which can drastically reduce the effort of preparing a dataset for any script. The combination of the character spotting method and the autonomous tagging brings the entire offline recognition problem very close to a singular solution. Additionally, a database named the Boise State Bangla Handwriting Dataset was developed. This is one of the richest offline datasets currently available for Bangla and this has been made publicly accessible to accelerate the research progress. Many other tools were developed and experiments were conducted to more rigorously validate this framework by evaluating the method against external datasets (CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Documents). Offline handwriting recognition is an extremely promising technology and the outcome of this research moves the field significantly ahead
    • …
    corecore