1,407 research outputs found

    Cross-lingual Distillation for Text Classification

    Full text link
    Cross-lingual text classification(CLTC) is the task of classifying documents written in different languages into the same taxonomy of categories. This paper presents a novel approach to CLTC that builds on model distillation, which adapts and extends a framework originally proposed for model compression. Using soft probabilistic predictions for the documents in a label-rich language as the (induced) supervisory labels in a parallel corpus of documents, we train classifiers successfully for new languages in which labeled training data are not available. An adversarial feature adaptation technique is also applied during the model training to reduce distribution mismatch. We conducted experiments on two benchmark CLTC datasets, treating English as the source language and German, French, Japan and Chinese as the unlabeled target languages. The proposed approach had the advantageous or comparable performance of the other state-of-art methods.Comment: Accepted at ACL 2017; Code available at https://github.com/xrc10/cross-distil

    An Empirical Study of Leveraging Knowledge Distillation for Compressing Multilingual Neural Machine Translation Models

    Full text link
    Knowledge distillation (KD) is a well-known method for compressing neural models. However, works focusing on distilling knowledge from large multilingual neural machine translation (MNMT) models into smaller ones are practically nonexistent, despite the popularity and superiority of MNMT. This paper bridges this gap by presenting an empirical investigation of knowledge distillation for compressing MNMT models. We take Indic to English translation as a case study and demonstrate that commonly used language-agnostic and language-aware KD approaches yield models that are 4-5x smaller but also suffer from performance drops of up to 3.5 BLEU. To mitigate this, we then experiment with design considerations such as shallower versus deeper models, heavy parameter sharing, multi-stage training, and adapters. We observe that deeper compact models tend to be as good as shallower non-compact ones, and that fine-tuning a distilled model on a High-Quality subset slightly boosts translation quality. Overall, we conclude that compressing MNMT models via KD is challenging, indicating immense scope for further research.Comment: accepted at EAMT 202
    • …
    corecore