56 research outputs found

    Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications

    Full text link
    We develop a constructive piecewise polynomial approximation theory in weighted Sobolev spaces with Muckenhoupt weights for any polynomial degree. The main ingredients to derive optimal error estimates for an averaged Taylor polynomial are a suitable weighted Poincare inequality, a cancellation property and a simple induction argument. We also construct a quasi-interpolation operator, built on local averages over stars, which is well defined for functions in L1L^1. We derive optimal error estimates for any polynomial degree on simplicial shape regular meshes. On rectangular meshes, these estimates are valid under the condition that neighboring elements have comparable size, which yields optimal anisotropic error estimates over nn-rectangular domains. The interpolation theory extends to cases when the error and function regularity require different weights. We conclude with three applications: nonuniform elliptic boundary value problems, elliptic problems with singular sources, and fractional powers of elliptic operators

    A FEM for an optimal control problem of fractional powers of elliptic operators

    Full text link
    We study solution techniques for a linear-quadratic optimal control problem involving fractional powers of elliptic operators. These fractional operators can be realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi-infinite cylinder in one more spatial dimension. Thus, we consider an equivalent formulation with a nonuniformly elliptic operator as state equation. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We discretize the proposed truncated state equation using first degree tensor product finite elements on anisotropic meshes. For the control problem we analyze two approaches: one that is semi-discrete based on the so-called variational approach, where the control is not discretized, and the other one is fully discrete via the discretization of the control by piecewise constant functions. For both approaches, we derive a priori error estimates with respect to the degrees of freedom. Numerical experiments validate the derived error estimates and reveal a competitive performance of anisotropic over quasi-uniform refinement

    Positive approximations of the inverse of fractional powers of SPD M-matrices

    Full text link
    This study is motivated by the recent development in the fractional calculus and its applications. During last few years, several different techniques are proposed to localize the nonlocal fractional diffusion operator. They are based on transformation of the original problem to a local elliptic or pseudoparabolic problem, or to an integral representation of the solution, thus increasing the dimension of the computational domain. More recently, an alternative approach aimed at reducing the computational complexity was developed. The linear algebraic system Aαu=f\cal A^\alpha \bf u=\bf f, 0<α<10< \alpha <1 is considered, where A\cal A is a properly normalized (scalded) symmetric and positive definite matrix obtained from finite element or finite difference approximation of second order elliptic problems in Ω⊂Rd\Omega\subset\mathbb{R}^d, d=1,2,3d=1,2,3. The method is based on best uniform rational approximations (BURA) of the function tβ−αt^{\beta-\alpha} for 0<t≤10 < t \le 1 and natural β\beta. The maximum principles are among the major qualitative properties of linear elliptic operators/PDEs. In many studies and applications, it is important that such properties are preserved by the selected numerical solution method. In this paper we present and analyze the properties of positive approximations of A−α\cal A^{-\alpha} obtained by the BURA technique. Sufficient conditions for positiveness are proven, complemented by sharp error estimates. The theoretical results are supported by representative numerical tests
    • …
    corecore