34 research outputs found

    Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding—Part II: Asymmetric Constellations

    Get PDF
    In this paper, multilevel coded asymmetric modulation with multistage decoding and unequal error protection (UEP) is discussed. These results further emphasize the fact that unconventional signal set partitionings are more promising than traditional (Ungerboeck-type) partitionings, to achieve UEP capabilities with multilevel coding and multistage decoding. Three types of unconventional partitionings are analyzed for asymmetric 8-PSK and 16-QAM constellations over the additive white Gaussian noise channel to introduce design guidelines. Generalizations to other PSK and QAM type constellations follow the same lines. Upper bounds on the bit-error probability based on union bound arguments are first derived. In some cases, these bounds become loose due to the large overlappings of decision regions associated with asymmetric constellations and unconventional partitionings. To overcome this problem, simpler and tighter approximated bounds are derived. Based on these bounds, it is shown that additional refinements can be achieved in the construction of multilevel UEP codes, by introducing asymmetries in PSK and QAM signal constellations

    Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding—Part I: Symmetric Constellations

    Get PDF
    In this paper, theoretical upper bounds and computer simulation results on the error performance of multilevel block coded modulations for unequal error protection (UEP) and multistage decoding are presented. It is shown that nonstandard signal set partitionings and multistage decoding provide excellent UEP capabilities beyond those achievable with conventional coded modulation. The coding scheme is designed in such a way that the most important information bits have a lower error rate than other information bits. The large effective error coefficients, normally associated with standard mapping by set partitioning, are reduced by considering nonstandard partitionings of the underlying signal set. The bits-to-signal mappings induced by these partitionings allow the use of soft-decision decoding of binary block codes. Moreover, parallel operation of some of the staged decoders is possible, to achieve high data rate transmission, so that there is no error propagation between these decoders. Hybrid partitionings are also considered that trade off increased intraset distances in the last partition levels with larger effective error coefficients in the middle partition levels. The error performance of specific examples of multilevel codes over 8-PSK and 64-QAM signal sets are simulated and compared with theoretical upper bounds on the error performance

    Bandwidth-efficient communication systems based on finite-length low density parity check codes

    Get PDF
    Low density parity check (LDPC) codes are linear block codes constructed by pseudo-random parity check matrices. These codes are powerful in terms of error performance and, especially, have low decoding complexity. While infinite-length LDPC codes approach the capacity of communication channels, finite-length LDPC codes also perform well, and simultaneously meet the delay requirement of many communication applications such as voice and backbone transmissions. Therefore, finite-length LDPC codes are attractive to employ in low-latency communication systems. This thesis mainly focuses on the bandwidth-efficient communication systems using finite-length LDPC codes. Such bandwidth-efficient systems are realized by mapping a group of LDPC coded bits to a symbol of a high-order signal constellation. Depending on the systems' infrastructure and knowledge of the channel state information (CSI), the signal constellations in different coded modulation systems can be two-dimensional multilevel/multiphase constellations or multi-dimensional space-time constellations. In the first part of the thesis, two basic bandwidth-efficient coded modulation systems, namely LDPC coded modulation and multilevel LDPC coded modulation, are investigated for both additive white Gaussian noise (AWGN) and frequency-flat Rayleigh fading channels. The bounds on the bit error rate (BER) performance are derived for these systems based on the maximum likelihood (ML) criterion. The derivation of these bounds relies on the union bounding and combinatoric techniques. In particular, for the LDPC coded modulation, the ML bound is computed from the Hamming distance spectrum of the LDPC code and the Euclidian distance profile of the two-dimensional constellation. For the multilevel LDPC coded modulation, the bound of each decoding stage is obtained for a generalized multilevel coded modulation, where more than one coded bit is considered for level. For both systems, the bounds are confirmed by the simulation results of ML decoding and/or the performance of the ordered-statistic decoding (OSD) and the sum-product decoding. It is demonstrated that these bounds can be efficiently used to evaluate the error performance and select appropriate parameters (such as the code rate, constellation and mapping) for the two communication systems.The second part of the thesis studies bandwidth-efficient LDPC coded systems that employ multiple transmit and multiple receive antennas, i.e., multiple-input multiple-output (MIMO) systems. Two scenarios of CSI availability considered are: (i) the CSI is unknown at both the transmitter and the receiver; (ii) the CSI is known at both the transmitter and the receiver. For the first scenario, LDPC coded unitary space-time modulation systems are most suitable and the ML performance bound is derived for these non-coherent systems. To derive the bound, the summation of chordal distances is obtained and used instead of the Euclidean distances. For the second case of CSI, adaptive LDPC coded MIMO modulation systems are studied, where three adaptive schemes with antenna beamforming and/or antenna selection are investigated and compared in terms of the bandwidth efficiency. For uncoded discrete-rate adaptive modulation, the computation of the bandwidth efficiency shows that the scheme with antenna selection at the transmitter and antenna combining at the receiver performs the best when the number of antennas is small. For adaptive LDPC coded MIMO modulation systems, an achievable threshold of the bandwidth efficiency is also computed from the ML bound of LDPC coded modulation derived in the first part

    Improving ADSL Performance with Selective QAM Mapping and Hybrid ARQ

    Get PDF
    Asymmetric Digital Subscriber Line (ADSL) is a high-rate transmission standard used for broadband access. Error performance and bandwidth efficiency are the two main concerns in ADSL transmission, hence prompting the need for appropriate techniques to provide improved error protection and noise robustness in ADSL systems. This paper proposes an enhanced ADSL transmission model which incorporates Trellis Coded Modulation (TCM), selective or prioritised QAM constellation mapping and Hybrid Automatic Repeat reQuest HARQ with diversity combining. Simulation results demonstrate that the proposed scheme provides a significant gain of over 3 dB in Eb/No over a conventional ADSL system which does not use HARQ. It also achieves a 30 percent gain in throughput over a conventional ADSL which uses HARQ without diversity combining.Keywords: ADSL, Selective QAM, TCM, HARQ, Diversity Combining.Cite as:A B N Goolamhossen, T P Fowdur "Improving ADSL Performance with Selective QAM Mapping and Hybrid ARQ ", ADBU J.Engg.Tech., 2(1)(2015) 0021103(7pp

    Hierarchical colour-shift-keying aided layered video streaming for the visible light downlink

    No full text
    Colour-shift keying (CSK) constitutes an important modulation scheme conceived for the visible light communications (VLC). The signal constellation of CSK relies on three different-color light sources invoked for information transmission. The CSK constellation has been optimized for minimizing the bit error rate, but no effort has been invested in investigating the feasibility of CSK aided unequal error protection (UEP) schemes conceived for video sources. Hence, in this treatise, we conceive a hierarchical CSK (HCSK) modulation scheme based on the traditional CSK, which is capable of generating interdependent layers of signals having different error probability, which can be readily reconfigured by changing its parameters. Furthermore, we conceived an HCSK design example for transmitting scalable video sources with the aid of a recursive systematic convolutional (RSC) code. An optimization method is conceived for enhancing the UEP and for improving the quality of the received video. Our simulation results show that the proposed optimized-UEP 16-HCSK-RSC system outperforms the traditional equal error protection scheme by ~ 1.7 dB of optical SNR at a peak signal-to-noise ratio of 37 dB, while optical SNR savings of up to 6.5 dB are attained at a lower PSNR of 36 dB

    Multilevel Coding and Unequal Error Protection for Multiple-Access Communications and Ultra-Wideband Communications in the Presence of Interference.

    Full text link
    Interference is one of the major factors that degrade the performance of a communication system. Various types of interference cause di Kerent impact on the system performance. In this thesis, we consider interference management at the physical layer. In order to enhance the performance, the receiver needs to have the knowledge about the interference. By exploiting the knowledge about interference, such as statistical properties, it can be suppressed to enhance the link quality. This thesis contains two main topics: multilevel coding (MLC) for unequal error protection (UEP) and receiver design for ultra-wideband (UWB) communications to suppress interference. Both topics deal with interference in di Kerent ways, and face di Kerent design challenges. MLC is a way to provide UEP for different streams of information with different levels of importance in a communication system. It combines coding and modulation schemes to optimize the system performance. The idea is to protect each bit in the modulation constellation point by an individual binary code. We designed and analyzed a DS-CDMA system with asymmetric PSK modulation and MLC using BCH codes in an AWGN channel. The analysis includes probability of bit error of the system, and the capacity and throughput of the MLC scheme combined with 8-PSK modulation. The results show that the MLC scheme can have a higher throughput than the regular coding scheme in the low SNR region in the AWGN channel. We also analyzed the performance of UWB communications in the presence of MAI and jamming interference. We considered a nonlinear interference suppression technique for impulse radio based UWB systems in the AWGN channel. The technique is based on the locally optimum Bayes detection (LOBD) algorithm, which utilizes the interference probability density function (PDF) for receiver design. This type of receiver has low complexity, and numerical results show that its performance asymptotically approaches that of the optimum receiver. Lastly, we discussed the implementation of the proposed receiver by adaptively monitor and update the interference PDF. The adaptive LOBD algorithm makes the proposed receiver implementation practical to deal with different types of interference.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/75955/1/wangcw_1.pd

    On the BICM Capacity

    Full text link
    Optimal binary labelings, input distributions, and input alphabets are analyzed for the so-called bit-interleaved coded modulation (BICM) capacity, paying special attention to the low signal-to-noise ratio (SNR) regime. For 8-ary pulse amplitude modulation (PAM) and for 0.75 bit/symbol, the folded binary code results in a higher capacity than the binary reflected gray code (BRGC) and the natural binary code (NBC). The 1 dB gap between the additive white Gaussian noise (AWGN) capacity and the BICM capacity with the BRGC can be almost completely removed if the input symbol distribution is properly selected. First-order asymptotics of the BICM capacity for arbitrary input alphabets and distributions, dimensions, mean, variance, and binary labeling are developed. These asymptotics are used to define first-order optimal (FOO) constellations for BICM, i.e. constellations that make BICM achieve the Shannon limit -1.59 \tr{dB}. It is shown that the \Eb/N_0 required for reliable transmission at asymptotically low rates in BICM can be as high as infinity, that for uniform input distributions and 8-PAM there are only 72 classes of binary labelings with a different first-order asymptotic behavior, and that this number is reduced to only 26 for 8-ary phase shift keying (PSK). A general answer to the question of FOO constellations for BICM is also given: using the Hadamard transform, it is found that for uniform input distributions, a constellation for BICM is FOO if and only if it is a linear projection of a hypercube. A constellation based on PAM or quadrature amplitude modulation input alphabets is FOO if and only if they are labeled by the NBC; if the constellation is based on PSK input alphabets instead, it can never be FOO if the input alphabet has more than four points, regardless of the labeling.Comment: Submitted to the IEEE Transactions on Information Theor

    Blind Phase Recovery in Cross QAM Communication Systems with the Reduced Constellation Eigth-Order Estimator (RCEOE)

    Get PDF
    The eighth-order (EOE) phase estimator [4] is modified to work for an eight-symbol symmetrical constellation, so that the large signal-to-noise (SNR) performance is not limited by self-noise. By using only the eight highest energy points of cross- QAM constellations, a reduced constellation eighth-order estimator (RCEOE) is proposed. Computer simulations for 128-QAM show that this new method performs substantially better than the recently introduced APP phase estimator of Wang et al. [8]. However, simulations with 32-QAM show little performance advantage of the RCEOE over the APP estimator, for SNR values normally of interest, whereas for low SNR, the improvement is significant. Application to any constellation which can be reduced to an 8-symbol quadrant symmetrical sub-constellation is straightforward

    Adaptive iterative decoding : block turbo codes and multilevel codes

    Get PDF
    New adaptive, iterative approaches to the decoding of block Turbo codes and multilevel codes are developed. Block Turbo codes are considered as they can readily provide high data rates, low decoding complexity and good performance. Multilevel codes are considered as they provide a moderate complexity approach to a high complexity code and can provide codes with good bandwidth efficiency. The work develops two adaptive sub-optimal soft output decoding algorithms for block Turbo codes. One is based on approximation and the other on the distance properties of the component codes. They can be used with different codes, modulation schemes, channel conditions and in different applications without modification. Both approaches provide improved performance compared to previous approaches on the additive white Gaussian noise (AWGN) channel. The approximation based adaptive algorithm is also investigated on the uncorrelated Rayleigh fiat fading channel and is shown to improve performance over previous approaches. Multilevel codes are typically decoded using a multistage decoder (MSD) for complexity reasons. Each level passes hard decisions to subsequent levels. If the approximation based adaptive algorithm is used to decode component codes in a traditional MSD it improves performance significantly. Performance can be improved further by passing reliability (extrinsic) information to all previous and subsequent levels using an iterative MSD. A new iterative multistage decoding algorithm for multilevel codes is developed by treating the extrinsic information as a Gaussian random variable. If the adaptive algorithms are used in conjunction with iterative multistage decoding on the AWGN channel, then a significant improvement in performance is obtained compared to results using a traditional MSD
    corecore