10,495 research outputs found

    Explaining Explanation

    Get PDF
    It is not a particularly hard thing to want or seek explanations. In fact, explanations seem to be a large and natural part of our cognitive lives. Children ask why and how questions very early in development and seem genuinely to want some sort of answer, despite our often being poorly equipped to provide them at the appropriate level of sophistication and detail. We seek and receive explanations in every sphere of our adult lives, whether it be to understand why a friendship has foundered, why a car will not start, or why ice expands when it freezes. Moreover, correctly or incorrectly, most of the time we think we know when we have or have not received a good explanation. There is a sense both that a given, successful explanation satisfies a cognitive need, and that a questionable or dubious explanation does not. There are also compelling intuitions about what make good explanations in terms of their form, that is, a sense of when they are structured correctly

    Significance Driven Hybrid 8T-6T SRAM for Energy-Efficient Synaptic Storage in Artificial Neural Networks

    Full text link
    Multilayered artificial neural networks (ANN) have found widespread utility in classification and recognition applications. The scale and complexity of such networks together with the inadequacies of general purpose computing platforms have led to a significant interest in the development of efficient hardware implementations. In this work, we focus on designing energy efficient on-chip storage for the synaptic weights. In order to minimize the power consumption of typical digital CMOS implementations of such large-scale networks, the digital neurons could be operated reliably at scaled voltages by reducing the clock frequency. On the contrary, the on-chip synaptic storage designed using a conventional 6T SRAM is susceptible to bitcell failures at reduced voltages. However, the intrinsic error resiliency of NNs to small synaptic weight perturbations enables us to scale the operating voltage of the 6TSRAM. Our analysis on a widely used digit recognition dataset indicates that the voltage can be scaled by 200mV from the nominal operating voltage (950mV) for practically no loss (less than 0.5%) in accuracy (22nm predictive technology). Scaling beyond that causes substantial performance degradation owing to increased probability of failures in the MSBs of the synaptic weights. We, therefore propose a significance driven hybrid 8T-6T SRAM, wherein the sensitive MSBs are stored in 8T bitcells that are robust at scaled voltages due to decoupled read and write paths. In an effort to further minimize the area penalty, we present a synaptic-sensitivity driven hybrid memory architecture consisting of multiple 8T-6T SRAM banks. Our circuit to system-level simulation framework shows that the proposed synaptic-sensitivity driven architecture provides a 30.91% reduction in the memory access power with a 10.41% area overhead, for less than 1% loss in the classification accuracy.Comment: Accepted in Design, Automation and Test in Europe 2016 conference (DATE-2016

    Knowledge Representation and WordNets

    Get PDF
    Knowledge itself is a representation of “real facts”. Knowledge is a logical model that presents facts from “the real world” witch can be expressed in a formal language. Representation means the construction of a model of some part of reality. Knowledge representation is contingent to both cognitive science and artificial intelligence. In cognitive science it expresses the way people store and process the information. In the AI field the goal is to store knowledge in such way that permits intelligent programs to represent information as nearly as possible to human intelligence. Knowledge Representation is referred to the formal representation of knowledge intended to be processed and stored by computers and to draw conclusions from this knowledge. Examples of applications are expert systems, machine translation systems, computer-aided maintenance systems and information retrieval systems (including database front-ends).knowledge, representation, ai models, databases, cams

    Deepr: A Convolutional Net for Medical Records

    Full text link
    Feature engineering remains a major bottleneck when creating predictive systems from electronic medical records. At present, an important missing element is detecting predictive regular clinical motifs from irregular episodic records. We present Deepr (short for Deep record), a new end-to-end deep learning system that learns to extract features from medical records and predicts future risk automatically. Deepr transforms a record into a sequence of discrete elements separated by coded time gaps and hospital transfers. On top of the sequence is a convolutional neural net that detects and combines predictive local clinical motifs to stratify the risk. Deepr permits transparent inspection and visualization of its inner working. We validate Deepr on hospital data to predict unplanned readmission after discharge. Deepr achieves superior accuracy compared to traditional techniques, detects meaningful clinical motifs, and uncovers the underlying structure of the disease and intervention space

    Intergenerational knowledge transfer in the academic environment of knowledge-based economy

    Get PDF
    In the immediate future, intergenerational knowledge transfer is one of the knowledge-based economy’s main challenges since an inner motivational force powers knowledge transfer. Knowledge transfer from individuals to groups and organization must follow knowledge creation in order to transform individual into organizational knowledge, along the epistemological dimension of the Nonaka’s knowledge dynamics model. Moreover, the knowledge intensive organizations increase their fluxes of knowledge across different age layers and different departments, reducing in the same time the company knowledge loss. The academic environment is, by nature, an age layered field or a nested functional structure. Intergenerational knowledge transfer becomes any university main driving force, while understanding its dynamics is important for academic life improvement. The purpose of the paper is to present some of our research results in the field of intergenerational knowledge transfer in the academic environment of the knowledge-based economy. We performed a qualitative and quantitative research of the knowledge transfer process in the academic environment, using the Analytic Hierarchy Processes (AHP). We analyzed the faculty staff attitudes toward cooperation, competition, and innovation as main priorities in performing research, writing books and publishing scientific papers. The above-mentioned activities are based on intergenerational knowledge transfer and lead to learning processes at individual and organizational levels. Respondents are members of the academic staff of economics and business faculties from the main Romanian universities.knowledge, knowledge-based economy, knowledge transfer, university
    corecore