3 research outputs found

    A new Potential-Based Reward Shaping for Reinforcement Learning Agent

    Full text link
    Potential-based reward shaping (PBRS) is a particular category of machine learning methods which aims to improve the learning speed of a reinforcement learning agent by extracting and utilizing extra knowledge while performing a task. There are two steps in the process of transfer learning: extracting knowledge from previously learned tasks and transferring that knowledge to use it in a target task. The latter step is well discussed in the literature with various methods being proposed for it, while the former has been explored less. With this in mind, the type of knowledge that is transmitted is very important and can lead to considerable improvement. Among the literature of both the transfer learning and the potential-based reward shaping, a subject that has never been addressed is the knowledge gathered during the learning process itself. In this paper, we presented a novel potential-based reward shaping method that attempted to extract knowledge from the learning process. The proposed method extracts knowledge from episodes' cumulative rewards. The proposed method has been evaluated in the Arcade learning environment and the results indicate an improvement in the learning process in both the single-task and the multi-task reinforcement learner agents

    Computationally Efficient Relational Reinforcement Learning

    Full text link
    Relational Reinforcement Learning (RRL) is a technique that enables Reinforcement Learning (RL) agents to generalize from their experience, allowing them to learn over large or potentially infinite state spaces, to learn context sensitive behaviors, and to learn to solve variable goals and to transfer knowledge between similar situations. Prior RRL architectures are not sufficiently computationally efficient to see use outside of small, niche roles within larger Artificial Intelligence (AI) architectures. I present a novel online, incremental RRL architecture and an implementation that is orders of magnitude faster than its predecessors. The first aspect of this architecture that I explore is a computationally efficient implementation of an adaptive Hierarchical Tile Coding (aHTC), a kind of Adaptive Tile Coding (ATC) in which more general tiles which cover larger portions of the state-action space are kept as ones that cover smaller portions of the state-action space are introduced, using k-dimensional tries (k-d tries) to implement the value function for non-relational Temporal Difference (TD) methods. In order to achieve comparable performance for RRL, I implement the Rete algorithm to replace my k-d tries due to its efficient handling of both the variable binding problem and variable numbers of actions. Tying aHTCs and Rete together, I present a rule grammar that both maps aHTCs onto Rete and allows the architecture to automatically extract relational features in order to support adaptation of the value function over time. I experiment with several refinement criteria and additional functionality with which my agents attempt to determine if rerefinement using different features might allow them to better learn a near optimal policy. I present optimal results using a value criterion for several variants of BlocksWorld. I provide transfer results for BlocksWorld and a scalable Taxicab domain. I additionally introduce a Higher Order Grammar (HOG) that grants online, incremental RRL agents additional flexibility to introduce additional variables and corresponding relations as needed in order to learn effective value functions. I evaluate agents that use the HOG on a version of Blocks World and on an Adventure task. In summary, I present a new online, incremental RRL architecture, a grammar to map aHTCs onto the Rete, and an implementation that is orders of magnitude faster than its predecessors.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145859/1/bazald_1.pd
    corecore