544 research outputs found

    Bayesian Inference of Online Social Network Statistics via Lightweight Random Walk Crawls

    Get PDF
    Online social networks (OSN) contain extensive amount of information about the underlying society that is yet to be explored. One of the most feasible technique to fetch information from OSN, crawling through Application Programming Interface (API) requests, poses serious concerns over the the guarantees of the estimates. In this work, we focus on making reliable statistical inference with limited API crawls. Based on regenerative properties of the random walks, we propose an unbiased estimator for the aggregated sum of functions over edges and proved the connection between variance of the estimator and spectral gap. In order to facilitate Bayesian inference on the true value of the estimator, we derive the approximate posterior distribution of the estimate. Later the proposed ideas are validated with numerical experiments on inference problems in real-world networks

    Conditional Reliability in Uncertain Graphs

    Full text link
    Network reliability is a well-studied problem that requires to measure the probability that a target node is reachable from a source node in a probabilistic (or uncertain) graph, i.e., a graph where every edge is assigned a probability of existence. Many approaches and problem variants have been considered in the literature, all assuming that edge-existence probabilities are fixed. Nevertheless, in real-world graphs, edge probabilities typically depend on external conditions. In metabolic networks a protein can be converted into another protein with some probability depending on the presence of certain enzymes. In social influence networks the probability that a tweet of some user will be re-tweeted by her followers depends on whether the tweet contains specific hashtags. In transportation networks the probability that a network segment will work properly or not might depend on external conditions such as weather or time of the day. In this paper we overcome this limitation and focus on conditional reliability, that is assessing reliability when edge-existence probabilities depend on a set of conditions. In particular, we study the problem of determining the k conditions that maximize the reliability between two nodes. We deeply characterize our problem and show that, even employing polynomial-time reliability-estimation methods, it is NP-hard, does not admit any PTAS, and the underlying objective function is non-submodular. We then devise a practical method that targets both accuracy and efficiency. We also study natural generalizations of the problem with multiple source and target nodes. An extensive empirical evaluation on several large, real-life graphs demonstrates effectiveness and scalability of the proposed methods.Comment: 14 pages, 13 figure

    Toward automatic censorship detection in microblogs

    Full text link
    Social media is an area where users often experience censorship through a variety of means such as the restriction of search terms or active and retroactive deletion of messages. In this paper we examine the feasibility of automatically detecting censorship of microblogs. We use a network growing model to simulate discussion over a microblog follow network and compare two censorship strategies to simulate varying levels of message deletion. Using topological features extracted from the resulting graphs, a classifier is trained to detect whether or not a given communication graph has been censored. The results show that censorship detection is feasible under empirically measured levels of message deletion. The proposed framework can enable automated censorship measurement and tracking, which, when combined with aggregated citizen reports of censorship, can allow users to make informed decisions about online communication habits.Comment: 13 pages. Updated with example cascades figure and typo fixes. To appear at the International Workshop on Data Mining in Social Networks (PAKDD-SocNet) 201
    • …
    corecore