3,210 research outputs found

    Multifluid magnetohydrodynamic turbulent decay

    Get PDF
    It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation which occurs within them. Non-ideal magnetohydrodynamic effects are known to influence the nature of this turbulence. We present the results of a suite of 512-cubed resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power-law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power-law in nature.Comment: 16 pages, 15 figures, Accepted for publication in Ap

    High-frequency Alfven waves in multi-ion coronal plasma : observational implications

    Get PDF
    We investigate the effects of high-frequency (of order ion gyrofrequency) Alfvén and ion-cyclotron waves on ion emission lines by studying the dispersion of these waves in a multi-ion coronal plasma. For this purpose we solve the dispersion relation of the linearized multifluid and Vlasov equations in a magnetized multi-ion plasma with coronal abundances of heavy ions. We also calculate the dispersion relation using nonlinear one-dimensional hybrid kinetic simulations of the multi-ion plasma. When heavy ions are present the dispersion relation of parallel propagating Alfvén cyclotron waves exhibits the following branches (in the positive Ω − k quadrant): right-hand polarized nonresonant and left-hand polarized resonant branch for protons and each ion. We calculate the ratio of ion to proton velocities perpendicular to the direction of the magnetic field for each wave modes for typical coronal parameters and find strong enhancement of the heavy ion perpendicular fluid velocity compared with proton perpendicular fluid velocity. The linear multifluid cold plasma results agree with linear warm plasma Vlasov results and with the nonlinear hybrid simulation model results. In view of our findings we discuss how the observed nonthermal line broadening of minor ions in coronal holes may relate to the high-frequency wave motions

    Thermal instability in ionized plasma

    Full text link
    We study magnetothermal instability in the ionized plasmas including the effects of Ohmic, ambipolar and Hall diffusion. Magnetic field in the single fluid approximation does not allow transverse thermal condensations, however, non-ideal effects highly diminish the stabilizing role of the magnetic field in thermally unstable plasmas. Therefore, enhanced growth rate of thermal condensation modes in the presence of the diffusion mechanisms speed up the rate of structure formation.Comment: Accepted for publication in Astrophysics & Space Scienc

    An explicit scheme for multifluid magnetohydrodynamics

    Get PDF
    When modeling astrophysical fluid flows, it is often appropriate to discard the canonical magnetohydrodynamic approximation thereby freeing the magnetic field to diffuse with respect to the bulk velocity field. As a consequence, however, the induction equation can become problematic to solve via standard explicit techniques. In particular, the Hall diffusion term admits fast-moving whistler waves which can impose a vanishing timestep limit. Within an explicit differencing framework, a multifluid scheme for weakly ionised plasmas is presented which relies upon a new approach to integrating the induction equation efficiently. The first component of this approach is a relatively unknown method of accelerating the integration of parabolic systems by enforcing stability over large compound timesteps rather than over each of the constituent substeps. This method, Super Time Stepping, proves to be very effective in applying a part of the Hall term up to a known critical value. The excess of the Hall term above this critical value is then included via a new scheme for pure Hall diffusion.Comment: 8 pages; 4 figures; accepted by MNRAS; minor corrections to equations; addition of appendi

    Dynamical Systems Perspective of Cosmological Finite-time Singularities in f(R)f(R) Gravity and Interacting Multifluid Cosmology

    Get PDF
    In this work we shall investigate the occurrence of future cosmological finite-time singularities in the dynamical system corresponding to two cosmological theories, namely that of vacuum f(R)f(R) gravity and that of three fluids. The vacuum f(R)f(R) gravity is an example for which the variables we will choose to quantify the phase space dynamics, do not necessarily blow-up near a cosmological singularity. After appropriately choosing the variables, we shall investigate the behavior of the corresponding dynamical system near some types of cosmological finite-time singularities, for some limiting cases in which we can produce analytic solutions for the dynamical variables. The most interesting case from both a mathematical and physical point of view, is the Big Rip case, and particularly in the limiting case of a very strong singularity. The physically appealing outcome is that the resulting non-autonomous dynamical system is attracted asymptotically to an accelerating attractor solution, with equation of state parameter weff=1w_{eff}=-1. Our analytic results, show that an extremely strong Big Rip singularity in vacuum f(R)f(R) gravity theories is always related to an accelerating solution, or tends to acceleration. The converse statement though may not be true. The second cosmology we shall study is a multifluid cosmology, consisting of three fluids, the interacting dark matter and dark energy fluids, and the baryonic fluid. By appropriately choosing the variables, we will show that the dynamical system can become an autonomous polynomial dynamical system, in which case, by using a dominant balance analysis, we shall investigate the occurrence of finite-time singularities in this system.Comment: PRD Accepte

    Transient evolution of C-type shocks in dusty regions of varying density

    Full text link
    Outflows of young stars drive shocks into dusty, molecular regions. Most models of such shocks assume that they are steady and propagating perpendicular to the magnetic field. Real shocks often violate both of these assumptions and the media through which they propagate are inhomogeneous. We use the code employed previously to produce the first time-dependent simulations of fast-mode, oblique C-type shocks interacting with density perturbations. We include a self-consistent calculation of the thermal and ionisation balances and a fluid treatment of grains. We identify features that develop when a multifluid shock encounters a density inhomogeneity to investigate whether any part of the precursor region ever behaves in a quasi-steady fashion. If it does the shock may be modelled approximately without solving the time-dependent hydromagnetic equations. Simulations were made for initially steady oblique C-type shocks encountering density inhomogeneities. For a semi-finite inhomogeneity with a density larger than the surrounding medium, a transmitted shock evolves from being J-type to a steady C-type shock on a timescale comparable to the ion-flow time through it. A sufficiently upstream part of the precursor of an evolving J-type shock is quasi-steady. The ion-flow timescale is also relevant for the evolution of a shock moving into a region of decreasing density. The models for shocks propagating into regions in which the density increases and then decreases to its initial value cannot be entirely described in terms of the results obtained for monotonically increasing and decreasing densities. For the latter model, the long-term evolution to a C-type shock cannot be approximated by quasi-steady models.Comment: 11 pages, 9 figure
    corecore