4 research outputs found

    A Coevolutionary Variable Neighborhood Search Algorithm for Discrete Multitasking (CoVNS): Application to Community Detection over Graphs

    Full text link
    The main goal of the multitasking optimization paradigm is to solve multiple and concurrent optimization tasks in a simultaneous way through a single search process. For attaining promising results, potential complementarities and synergies between tasks are properly exploited, helping each other by virtue of the exchange of genetic material. This paper is focused on Evolutionary Multitasking, which is a perspective for dealing with multitasking optimization scenarios by embracing concepts from Evolutionary Computation. This work contributes to this field by presenting a new multitasking approach named as Coevolutionary Variable Neighborhood Search Algorithm, which finds its inspiration on both the Variable Neighborhood Search metaheuristic and coevolutionary strategies. The second contribution of this paper is the application field, which is the optimal partitioning of graph instances whose connections among nodes are directed and weighted. This paper pioneers on the simultaneous solving of this kind of tasks. Two different multitasking scenarios are considered, each comprising 11 graph instances. Results obtained by our method are compared to those issued by a parallel Variable Neighborhood Search and independent executions of the basic Variable Neighborhood Search. The discussion on such results support our hypothesis that the proposed method is a promising scheme for simultaneous solving community detection problems over graphs.Comment: 7 pages, paper accepted for presentation in the 2020 IEEE Symposium Series on Computational Intelligence (IEEE SSCI

    dMFEA-II: An Adaptive Multifactorial Evolutionary Algorithm for Permutation-based Discrete Optimization Problems

    Full text link
    The emerging research paradigm coined as multitasking optimization aims to solve multiple optimization tasks concurrently by means of a single search process. For this purpose, the exploitation of complementarities among the tasks to be solved is crucial, which is often achieved via the transfer of genetic material, thereby forging the Transfer Optimization field. In this context, Evolutionary Multitasking addresses this paradigm by resorting to concepts from Evolutionary Computation. Within this specific branch, approaches such as the Multifactorial Evolutionary Algorithm (MFEA) has lately gained a notable momentum when tackling multiple optimization tasks. This work contributes to this trend by proposing the first adaptation of the recently introduced Multifactorial Evolutionary Algorithm II (MFEA-II) to permutation-based discrete optimization environments. For modeling this adaptation, some concepts cannot be directly applied to discrete search spaces, such as parent-centric interactions. In this paper we entirely reformulate such concepts, making them suited to deal with permutation-based search spaces without loosing the inherent benefits of MFEA-II. The performance of the proposed solver has been assessed over 5 different multitasking setups, composed by 8 datasets of the well-known Traveling Salesman (TSP) and Capacitated Vehicle Routing Problems (CVRP). The obtained results and their comparison to those by the discrete version of the MFEA confirm the good performance of the developed dMFEA-II, and concur with the insights drawn in previous studies for continuous optimization.Comment: 7 pages, 0 figures, Camera-ready version of the paper accepted for presentation in The Genetic and Evolutionary Computation Conference 2020 (GECCO 2020

    Multifactorial Cellular Genetic Algorithm (MFCGA): Algorithmic Design, Performance Comparison and Genetic Transferability Analysis

    Full text link
    Multitasking optimization is an incipient research area which is lately gaining a notable research momentum. Unlike traditional optimization paradigm that focuses on solving a single task at a time, multitasking addresses how multiple optimization problems can be tackled simultaneously by performing a single search process. The main objective to achieve this goal efficiently is to exploit synergies between the problems (tasks) to be optimized, helping each other via knowledge transfer (thereby being referred to as Transfer Optimization). Furthermore, the equally recent concept of Evolutionary Multitasking (EM) refers to multitasking environments adopting concepts from Evolutionary Computation as their inspiration for the simultaneous solving of the problems under consideration. As such, EM approaches such as the Multifactorial Evolutionary Algorithm (MFEA) has shown a remarkable success when dealing with multiple discrete, continuous, single-, and/or multi-objective optimization problems. In this work we propose a novel algorithmic scheme for Multifactorial Optimization scenarios - the Multifactorial Cellular Genetic Algorithm (MFCGA) - that hinges on concepts from Cellular Automata to implement mechanisms for exchanging knowledge among problems. We conduct an extensive performance analysis of the proposed MFCGA and compare it to the canonical MFEA under the same algorithmic conditions and over 15 different multitasking setups (encompassing different reference instances of the discrete Traveling Salesman Problem). A further contribution of this analysis beyond performance benchmarking is a quantitative examination of the genetic transferability among the problem instances, eliciting an empirical demonstration of the synergies emerged between the different optimization tasks along the MFCGA search process.Comment: Accepted for its presentation at WCCI 202

    AT-MFCGA: An Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm for Evolutionary Multitasking

    Full text link
    Transfer Optimization is an incipient research area dedicated to the simultaneous solving of multiple optimization tasks. Among the different approaches that can address this problem effectively, Evolutionary Multitasking resorts to concepts from Evolutionary Computation to solve multiple problems within a single search process. In this paper we introduce a novel adaptive metaheuristic algorithm for dealing with Evolutionary Multitasking environments coined as Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm (AT-MFCGA). AT-MFCGA relies on cellular automata to implement mechanisms for exchanging knowledge among the optimization problems under consideration. Furthermore, our approach is able to explain by itself the synergies among tasks that were encountered and exploited during the search, which helps understand interactions between related optimization tasks. A comprehensive experimental setup is designed for assessing and comparing the performance of AT-MFCGA to that of other renowned evolutionary multitasking alternatives (MFEA and MFEA-II). Experiments comprise 11 multitasking scenarios composed by 20 instances of 4 combinatorial optimization problems, yielding the largest discrete multitasking environment solved to date. Results are conclusive in regards to the superior quality of solutions provided by AT-MFCGA with respect to the rest of methods, which are complemented by a quantitative examination of the genetic transferability among tasks along the search process.Comment: 30 pages, 2 figures, under review for its consideration in Information Sciences journa
    corecore