4 research outputs found

    Multifactorial Cellular Genetic Algorithm (MFCGA): Algorithmic Design, Performance Comparison and Genetic Transferability Analysis

    Full text link
    Multitasking optimization is an incipient research area which is lately gaining a notable research momentum. Unlike traditional optimization paradigm that focuses on solving a single task at a time, multitasking addresses how multiple optimization problems can be tackled simultaneously by performing a single search process. The main objective to achieve this goal efficiently is to exploit synergies between the problems (tasks) to be optimized, helping each other via knowledge transfer (thereby being referred to as Transfer Optimization). Furthermore, the equally recent concept of Evolutionary Multitasking (EM) refers to multitasking environments adopting concepts from Evolutionary Computation as their inspiration for the simultaneous solving of the problems under consideration. As such, EM approaches such as the Multifactorial Evolutionary Algorithm (MFEA) has shown a remarkable success when dealing with multiple discrete, continuous, single-, and/or multi-objective optimization problems. In this work we propose a novel algorithmic scheme for Multifactorial Optimization scenarios - the Multifactorial Cellular Genetic Algorithm (MFCGA) - that hinges on concepts from Cellular Automata to implement mechanisms for exchanging knowledge among problems. We conduct an extensive performance analysis of the proposed MFCGA and compare it to the canonical MFEA under the same algorithmic conditions and over 15 different multitasking setups (encompassing different reference instances of the discrete Traveling Salesman Problem). A further contribution of this analysis beyond performance benchmarking is a quantitative examination of the genetic transferability among the problem instances, eliciting an empirical demonstration of the synergies emerged between the different optimization tasks along the MFCGA search process.Comment: Accepted for its presentation at WCCI 202

    On the Transferability of Knowledge among Vehicle Routing Problems by using Cellular Evolutionary Multitasking

    Full text link
    Multitasking optimization is a recently introduced paradigm, focused on the simultaneous solving of multiple optimization problem instances (tasks). The goal of multitasking environments is to dynamically exploit existing complementarities and synergies among tasks, helping each other through the transfer of genetic material. More concretely, Evolutionary Multitasking (EM) regards to the resolution of multitasking scenarios using concepts inherited from Evolutionary Computation. EM approaches such as the well-known Multifactorial Evolutionary Algorithm (MFEA) are lately gaining a notable research momentum when facing with multiple optimization problems. This work is focused on the application of the recently proposed Multifactorial Cellular Genetic Algorithm (MFCGA) to the well-known Capacitated Vehicle Routing Problem (CVRP). In overall, 11 different multitasking setups have been built using 12 datasets. The contribution of this research is twofold. On the one hand, it is the first application of the MFCGA to the Vehicle Routing Problem family of problems. On the other hand, equally interesting is the second contribution, which is focused on the quantitative analysis of the positive genetic transferability among the problem instances. To do that, we provide an empirical demonstration of the synergies arisen between the different optimization tasks.Comment: 8 pages, 1 figure, paper accepted for presentation in the 23rd IEEE International Conference on Intelligent Transportation Systems 2020 (IEEE ITSC 2020

    A Coevolutionary Variable Neighborhood Search Algorithm for Discrete Multitasking (CoVNS): Application to Community Detection over Graphs

    Full text link
    The main goal of the multitasking optimization paradigm is to solve multiple and concurrent optimization tasks in a simultaneous way through a single search process. For attaining promising results, potential complementarities and synergies between tasks are properly exploited, helping each other by virtue of the exchange of genetic material. This paper is focused on Evolutionary Multitasking, which is a perspective for dealing with multitasking optimization scenarios by embracing concepts from Evolutionary Computation. This work contributes to this field by presenting a new multitasking approach named as Coevolutionary Variable Neighborhood Search Algorithm, which finds its inspiration on both the Variable Neighborhood Search metaheuristic and coevolutionary strategies. The second contribution of this paper is the application field, which is the optimal partitioning of graph instances whose connections among nodes are directed and weighted. This paper pioneers on the simultaneous solving of this kind of tasks. Two different multitasking scenarios are considered, each comprising 11 graph instances. Results obtained by our method are compared to those issued by a parallel Variable Neighborhood Search and independent executions of the basic Variable Neighborhood Search. The discussion on such results support our hypothesis that the proposed method is a promising scheme for simultaneous solving community detection problems over graphs.Comment: 7 pages, paper accepted for presentation in the 2020 IEEE Symposium Series on Computational Intelligence (IEEE SSCI

    AT-MFCGA: An Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm for Evolutionary Multitasking

    Full text link
    Transfer Optimization is an incipient research area dedicated to the simultaneous solving of multiple optimization tasks. Among the different approaches that can address this problem effectively, Evolutionary Multitasking resorts to concepts from Evolutionary Computation to solve multiple problems within a single search process. In this paper we introduce a novel adaptive metaheuristic algorithm for dealing with Evolutionary Multitasking environments coined as Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm (AT-MFCGA). AT-MFCGA relies on cellular automata to implement mechanisms for exchanging knowledge among the optimization problems under consideration. Furthermore, our approach is able to explain by itself the synergies among tasks that were encountered and exploited during the search, which helps understand interactions between related optimization tasks. A comprehensive experimental setup is designed for assessing and comparing the performance of AT-MFCGA to that of other renowned evolutionary multitasking alternatives (MFEA and MFEA-II). Experiments comprise 11 multitasking scenarios composed by 20 instances of 4 combinatorial optimization problems, yielding the largest discrete multitasking environment solved to date. Results are conclusive in regards to the superior quality of solutions provided by AT-MFCGA with respect to the rest of methods, which are complemented by a quantitative examination of the genetic transferability among tasks along the search process.Comment: 30 pages, 2 figures, under review for its consideration in Information Sciences journa
    corecore