4,061 research outputs found
Vector Bin Packing with Multiple-Choice
We consider a variant of bin packing called multiple-choice vector bin
packing. In this problem we are given a set of items, where each item can be
selected in one of several -dimensional incarnations. We are also given
bin types, each with its own cost and -dimensional size. Our goal is to pack
the items in a set of bins of minimum overall cost. The problem is motivated by
scheduling in networks with guaranteed quality of service (QoS), but due to its
general formulation it has many other applications as well. We present an
approximation algorithm that is guaranteed to produce a solution whose cost is
about times the optimum. For the running time to be polynomial we
require and . This extends previous results for vector
bin packing, in which each item has a single incarnation and there is only one
bin type. To obtain our result we also present a PTAS for the multiple-choice
version of multidimensional knapsack, where we are given only one bin and the
goal is to pack a maximum weight set of (incarnations of) items in that bin
An Adaptive Quantum-inspired Differential Evolution Algorithm for 0-1 Knapsack Problem
Differential evolution (DE) is a population based evolutionary algorithm
widely used for solving multidimensional global optimization problems over
continuous spaces. However, the design of its operators makes it unsuitable for
many real-life constrained combinatorial optimization problems which operate on
binary space. On the other hand, the quantum inspired evolutionary algorithm
(QEA) is very well suitable for handling such problems by applying several
quantum computing techniques such as Q-bit representation and rotation gate
operator, etc. This paper extends the concept of differential operators with
adaptive parameter control to the quantum paradigm and proposes the adaptive
quantum-inspired differential evolution algorithm (AQDE). The performance of
AQDE is found to be significantly superior as compared to QEA and a discrete
version of DE on the standard 0-1 knapsack problem for all the considered test
cases.Comment: 6 Pages, 8 figure
A Weight-coded Evolutionary Algorithm for the Multidimensional Knapsack Problem
A revised weight-coded evolutionary algorithm (RWCEA) is proposed for solving
multidimensional knapsack problems. This RWCEA uses a new decoding method and
incorporates a heuristic method in initialization. Computational results show
that the RWCEA performs better than a weight-coded evolutionary algorithm
proposed by Raidl (1999) and to some existing benchmarks, it can yield better
results than the ones reported in the OR-library.Comment: Submitted to Applied Mathematics and Computation on April 8, 201
Optimal staffing under an annualized hours regime using Cross-Entropy optimization
This paper discusses staffing under annualized hours. Staffing is the selection of the most cost-efficient workforce to cover workforce demand. Annualized hours measure working time per year instead of per week, relaxing the restriction for employees to work the same number of hours every week. To solve the underlying combinatorial optimization problem this paper develops a Cross-Entropy optimization implementation that includes a penalty function and a repair function to guarantee feasible solutions. Our experimental results show Cross-Entropy optimization is efficient across a broad range of instances, where real-life sized instances are solved in seconds, which significantly outperforms an MILP formulation solved with CPLEX. In addition, the solution quality of Cross-Entropy closely approaches the optimal solutions obtained by CPLEX. Our Cross-Entropy implementation offers an outstanding method for real-time decision making, for example in response to unexpected staff illnesses, and scenario analysis
- …
