3,981 research outputs found

    Open source environment to define constraints in route planning for GIS-T

    Get PDF
    Route planning for transportation systems is strongly related to shortest path algorithms, an optimization problem extensively studied in the literature. To find the shortest path in a network one usually assigns weights to each branch to represent the difficulty of taking such branch. The weights construct a linear preference function ordering the variety of alternatives from the most to the least attractive.Postprint (published version

    Intelligence Surveillance and Reconnaissance Asset Assignment for Optimal Mission Effectiveness

    Get PDF
    This research develops mathematical programming techniques to solve an intelligence, surveillance, and reconnaissance sensor assignment problem for USSTRATCOM. The problem as specified is hypothesized to be difficult (i.e. np-hard). With the smallest test cases, the true optimal solution is found using simple optimization techniques, but, due to intractability, the optimal solutions for larger test cases are not found using these same techniques. Instead, heuristic techniques are applied to several test cases in order to determine the best, robust methodologies to find true or near optimal solutions. Specifically, simulated annealing (SA) is tested for convergence properties across several different parameter settings. This research also utilizes local search techniques with simple exchange neighborhoods of various sizes. Mission prioritization is also examined via a weighted sum scalarization technique

    Comparison of different Multiple-criteria decision analysis methods in the context of conceptual design: application to the development of a solar collector structure

    Get PDF
    At each stage of the product development process, the designers are facing an important task which consists of decision making. Two cases are observed: the problem of concept selection in conceptual design phases and, the problem of pre-dimensioning once concept choices are made. Making decisions in conceptual design phases on a sound basis is one of the most difficult challenges in engineering design, especially when innovative concepts are introduced. On the one hand, designers deal with imprecise data about design alternatives. On the other hand, design objectives and requirements are usually not clear in these phases. The greatest opportunities to reduce product life cycle costs usually occur during the first conceptual design phases. The need for reliable multi-criteria decision aid (MCDA) methods is thus greatest at early conceptual design phases. Various MCDA methods are proposed in the literature. The main criticism of these methods is that they usually yield different results for the same problem. In this work, an analysis of six MCDA methods (weighed sum, weighted product, Kim & Lin, compromise programming, TOPSIS, and ELECTRE I) was conducted. Our analysis was performed via an industrial case of solar collector structure development. The objective is to define the most appropriate MCDA methods in term of three criteria: (i) the consistency of the results, (ii) the ease of understanding and, (iii) the adaptation of the decision type. The results show that TOPSIS is the most consistent MCDA method in our case

    Critical review of multi-criteria decision aid methods in conceptual design phases: application to the development of a solar collector structure

    Get PDF
    At each stage of the product development process, the designers are facing an important task which consists of decision making. Two cases are observed: the problem of concept selection in conceptual design phases and, the problem of pre-dimensioning once concept choices are made. Making decisions in conceptual design phases on a sound basis is one of the most difficult challenges in engineering design, especially when innovative concepts are introduced. On the one hand, designers deal with imprecise data about design alternatives. On the other hand, design objectives and requirements are usually not clear in these phases. The greatest opportunities to reduce product life cycle costs usually occur during the first conceptual design phases. The need for reliable multi-criteria decision aid (MCDA) methods is thus greatest at early conceptual design phases. Various MCDA methods are proposed in the literature. The main criticism of these methods is that they usually yield different results for the same problem [22,23,25]. In this work, an analysis of six MCDA methods (weighed sum, weighted product, Kim & Lin, compromise programming, TOPSIS, and ELECTRE I) was conducted. Our analysis was performed via an industrial case of solar collector structure development. The objective is to define the most appropriate MCDA methods in term of three criteria: (i) the consistency of the results, (ii) the ease of understanding and, (iii) the adaptation of the decision type. The results show that TOPSIS is the most consistent MCDA method in our case
    • …
    corecore