43,598 research outputs found
A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems
Non-Local Total Variation (NLTV) has emerged as a useful tool in variational
methods for image recovery problems. In this paper, we extend the NLTV-based
regularization to multicomponent images by taking advantage of the Structure
Tensor (ST) resulting from the gradient of a multicomponent image. The proposed
approach allows us to penalize the non-local variations, jointly for the
different components, through various matrix norms with .
To facilitate the choice of the hyper-parameters, we adopt a constrained convex
optimization approach in which we minimize the data fidelity term subject to a
constraint involving the ST-NLTV regularization. The resulting convex
optimization problem is solved with a novel epigraphical projection method.
This formulation can be efficiently implemented thanks to the flexibility
offered by recent primal-dual proximal algorithms. Experiments are carried out
for multispectral and hyperspectral images. The results demonstrate the
interest of introducing a non-local structure tensor regularization and show
that the proposed approach leads to significant improvements in terms of
convergence speed over current state-of-the-art methods
Digital Holographic Microscopy of Phase Separation in Multicomponent Lipid Membranes
Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials
Recommended from our members
Self-Sorting Microscale Compartmentalized Block Copolypeptide Hydrogels
Multicomponent interpenetrating network hydrogels possessing enhanced mechanical stiffness compared to their individual components were prepared via physical mixing of diblock copolypeptides that assemble by either hydrophobic association or polyion complexation in aqueous media. Optical microscopy analysis of fluorescent-probe-labeled multicomponent hydrogels revealed that the diblock copolypeptide components rapidly and spontaneously self-sort to form distinct hydrogel networks that interpenetrate at micron length scales. These materials represent a class of microscale compartmentalized hydrogels composed of degradable, cell-compatible components, which possess rapid self-healing properties and independently tunable domains for downstream applications in biology and additive manufacturing
Coulomb crystal mass spectrometry in a digital ion trap
We present a mass spectrometric technique for identifying the masses and relative abundances of Coulomb-crystallized ions held in a linear Paul trap. A digital radio-frequency wave form is employed to generate the trapping potential, as this can be cleanly switched off, and static dipolar fields are subsequently applied to the trap electrodes for ion ejection. Close to 100% detection efficiency is demonstrated for Ca+ and CaF+ ions from bicomponent Ca+ − CaF+ Coulomb crystals prepared by the reaction of Ca+ with CH3F. A quantitative linear relationship is observed between ion number and the corresponding integrated time-of-flight (TOF) peak, independent of the ionic species. The technique is applicable to a diverse range of multicomponent Coulomb crystals—demonstrated here for Ca+ − NH3+ − NH4+ and Ca+ − CaOH+ − CaOD+ crystals—and will facilitate the measurement of ion-molecule reaction rates and branching ratios in complicated reaction systems
The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers.
Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma exhibit a 10,000-fold greater affinity for human hepatocellular carcinoma than for hepatocytes, endothelial cells or immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, small interfering RNA and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer enable a single protocell loaded with a drug cocktail to kill a drug-resistant human hepatocellular carcinoma cell, representing a 10(6)-fold improvement over comparable liposomes
Development and experimental validation of an overlay mortar with biocide activity
Biodeterioration of concrete by microorganism colonisation may be a problem in several structures, especially in irrigation and hydroelectric canals. The main problem in such structures is the proliferation of algae and cyanobacteria that affect the performance of the structure, increase the maintenance costs and affects its durability. A research was conducted to develop a novel cement-based material with biocide activity that can be used as an overlay mortar in existing structures, such as canals and pipes. With this aim, ten commercial biocides were evaluated in a laboratory campaign to assess the effectiveness of the compounds against the microbial colonisation of concrete. Both mono- and multicomponent formulations were designed from the commercial products, to increase their antimicrobial effect obtaining a set of biocide formulations. The formulations were submitted to a flowchart process to determine their influence on the physical properties of the concrete, evaluate the release of the actives, and their antimicrobial efficiency both before and after accelerated aging processes. During the campaign, some formulations were observed to diminish the strength of the concrete. Such behaviour was normally due to the interaction of the active with the cement hydration process. Other formulations showed a high release of active from the concrete in water, compromising the durability of the treatment. In general, monocomponent formulations did not succeed to fulfill all the requirements, thus multicomponent formulations were analysed. One studied multicomponent formulation presented particularly good results in all properties analysed. This product did not significantly change the properties of concrete and the release of active in water from the concrete was low, while the antimicrobial effects were long lasting.Peer ReviewedPostprint (author's final draft
Optical morphology of distant RATAN-600 radio galaxies from subarcsecond resolution NOT images
We present direct imaging data of 22 ultra steep spectrum radio sources
obtained at (or near) a subarcsecond seeing. The basic sample of 40 double
radio sources was selected from the RATAN-600 catalogue. The FRII-structure has
been confirmed with VLA and preliminary optical identifications which come from
the 6 m-telescope. As the RATAN-600 flux limit at 3.9 GHz ( 10mJy) is
fainter than that of major surveys, the sample may have high- contents. This
is also suggested by the faint magnitudes in the Hubble diagram. The final aim
is to create a homogeneous sample of high- radio galaxies in a well defined
strip around the sky, with faint radio limit and subarcsecond morphology down
to .
We could confirm 16 identifications down to 24. Most of the
extended objects have multicomponent structures as expected from other surveys
of high-redshift radio galaxies. We found five unresolved objects even with a
subarcsecond seeing. Of the remaining six objects, three are extremely faint
and the other three have such a complex environment that further observations
are needed to confirm the optical identification.Comment: A&AS in pres
- …
