104 research outputs found

    Multicolour Ramsey numbers of paths and even cycles

    Get PDF
    We prove new upper bounds on the multicolour Ramsey numbers of paths and even cycles

    Some hard families of parameterised counting problems

    Get PDF
    We consider parameterised subgraph-counting problems of the following form: given a graph G, how many k-tuples of its vertices have a given property? A number of such problems are known to be #W[1]-complete; here we substantially generalise some of these existing results by proving hardness for two large families of such problems. We demonstrate that it is #W[1]-hard to count the number of k-vertex subgraphs having any property where the number of distinct edge-densities of labelled subgraphs that satisfy the property is o(k^2). In the special case that the property in question depends only on the number of edges in the subgraph, we give a strengthening of this result which leads to our second family of hard problems.Comment: A few more minor changes. This version to appear in the ACM Transactions on Computation Theor

    Improved bounds on the multicolor Ramsey numbers of paths and even cycles

    Full text link
    We study the multicolor Ramsey numbers for paths and even cycles, Rk(Pn)R_k(P_n) and Rk(Cn)R_k(C_n), which are the smallest integers NN such that every coloring of the complete graph KNK_N has a monochromatic copy of PnP_n or CnC_n respectively. For a long time, Rk(Pn)R_k(P_n) has only been known to lie between (k1+o(1))n(k-1+o(1))n and (k+o(1))n(k + o(1))n. A recent breakthrough by S\'ark\"ozy and later improvement by Davies, Jenssen and Roberts give an upper bound of (k14+o(1))n(k - \frac{1}{4} + o(1))n. We improve the upper bound to (k12+o(1))n(k - \frac{1}{2}+ o(1))n. Our approach uses structural insights in connected graphs without a large matching. These insights may be of independent interest

    Monochromatic loose paths in multicolored kk-uniform cliques

    Full text link
    For integers k2k\ge 2 and 0\ell\ge 0, a kk-uniform hypergraph is called a loose path of length \ell, and denoted by P(k)P_\ell^{(k)}, if it consists of \ell edges e1,,ee_1,\dots,e_\ell such that eiej=1|e_i\cap e_j|=1 if ij=1|i-j|=1 and eiej=e_i\cap e_j=\emptyset if ij2|i-j|\ge2. In other words, each pair of consecutive edges intersects on a single vertex, while all other pairs are disjoint. Let R(P(k);r)R(P_\ell^{(k)};r) be the minimum integer nn such that every rr-edge-coloring of the complete kk-uniform hypergraph Kn(k)K_n^{(k)} yields a monochromatic copy of P(k)P_\ell^{(k)}. In this paper we are mostly interested in constructive upper bounds on R(P(k);r)R(P_\ell^{(k)};r), meaning that on the cost of possibly enlarging the order of the complete hypergraph, we would like to efficiently find a monochromatic copy of P(k)P_\ell^{(k)} in every coloring. In particular, we show that there is a constant c>0c>0 such that for all k2k\ge 2, 3\ell\ge3, 2rk12\le r\le k-1, and nk(+1)r(1+ln(r))n\ge k(\ell+1)r(1+\ln(r)), there is an algorithm such that for every rr-edge-coloring of the edges of Kn(k)K_n^{(k)}, it finds a monochromatic copy of P(k)P_\ell^{(k)} in time at most cnkcn^k. We also prove a non-constructive upper bound R(P(k);r)(k1)rR(P_\ell^{(k)};r)\le(k-1)\ell r

    An improvement on Łuczak's connected matchings method

    Get PDF
    A connected matching in a graph G is a matching contained in a connected component of G. A well-known method due to Łuczak reduces problems about monochromatic paths and cycles in complete graphs to problems about monochromatic connected matchings in almost complete graphs. We show that these can be further reduced to problems about monochromatic connected matchings in complete graphs. We illustrate the potential of this new reduction by showing how it can be used to determine the 3-colour Ramsey number of long paths, using a simpler argument than the original one by Gyárfás, Ruszinkó, Sárközy, and Szemerédi (2007)
    corecore