449 research outputs found
Linearisation, error correction coding and equalisation for multi-level modulation schemes
University of Technology, Sydney. Faculty of Engineering.Orthogonal frequency division multiplexing (OFDM) has been standardised for digital audio broadcasting (DAB), digital video broadcasting (DVB) and wireless local area networks (WLAN). OFDM systems are capable of effectively coping with frequency- selective fading without using complex equalisation structures. The modulation and demodulation processes using fast fourier transform (FFT) and its inverse (IFFT) can be implemented very efficiently. More recently, multicarrier code division multiple access (MC-CDMA) based on the combination of OFDM and conventional CDMA has received growing attention in the field of wireless personal communication and digital multimedia broadcasting. It can cope with channel frequency selectivity due to its own capabilities of overcoming the asynchronous nature of multimedia data traffic and higher capacity over conventional multiple access techniques.
On the other hand, multicarrier modulation schemes are based on the transmission of a given set of signals on large numbers of orthogonal subcarriers. Due to the fact that the multicarrier modulated (MCM) signal is a superposition of many amplitude modulated sinusoids, its probability density function is nearly Gaussian. Therefore, the MCM signal is characterised by a very high peak-to-average power ratio (PAPR). As a result of the high PAPR, the MCM signal is severely distorted when a nonlinear high power amplifier (HPA) is employed to obtain sufficient transmitting power. This is very common in most communication systems, and decreases the performance significantly. The simplest way to avoid the nonlinear distortion is substantial output backoff (OBO) operating in the linear region of the HPA. However, because of the high OBO, the peak transmit power has to be decreased. For this reason, many linearisation techniques have been proposed to compensate for the nonlinearity without applying high OBO. The predistortion techniques have been known and studied as one of the most promising means to solve the problem. In this thesis, an improved memory mapping predistortion technique devised to reduce the large computational complexity of a fixed point iterative (FPI) predistorter is proposed, suitable especially for multicarrier modulation schemes. The proposed memory mapping predistortion technique is further extended to compensate for nonlinear distortion with memory caused by a shaping linear filter. The case of varying HPA characteristics is also considered by using an adaptive memory mapping predistorter which updates the lookup table (LUT) and counteracts these variations. Finally, an amplitude memory mapping predistorter is presented to reduce the LUT size.
Channel coding techniques have been widely used as an effective solution against channel fading in wireless environments. Amongst these, particular attention has been paid to turbo codes due to their performance being close to the Shannon limit. In-depth study and evaluation of turbo coding has been carried out for constant envelope signaling systems such as BPSK, QPSK and M-ary PSK. In this thesis, the performance of TTCM-OFDM systems with high-order modulation schemes, e.g. 16-QAM and 64-QAM, is investigated and compared with conventional channel coding schemes such as Reed-Solomon and convolutional coding. The analysis is performed in terms of spectral efficiency over a multipath fading channel and in presence of an HPA. Maximum a-priori probability (MAP), soft output Viterbi algorithm (SOVA) and pragmatic algorithms are compared for non-binary turbo decoding with these systems. For this setup, iterative multiuser detection in TTCM/MC-CDMA systems with M-QAM is introduced and investigated, adopting a set of random codes to decrease the PAPR. As another application of TTCM, the performance of multicode CDMA systems with TTCM for outer coding over multipath fading channels is investigated
Multiuser Detection for the Uplink of Prefix-Assisted DS-CDMA Systems Employing Multiple Transmit and Receive Antennas
In this paper we consider the uplink transmission within a DS-CDMA system employing CP-assisted (Cylic Prefix) block transmission techniques combined with spatial multiplexing techniques that require multiple antennas at both the transmitter and the receiver. We present an efficient frequency-domain receiver structure with iterative MUD (MultiUser Detection). The performance of the proposed receiver can be close to the single user matched filter bound, even for fully loaded systems and/or severely time-dispersive channels.POSI/CPS/46701/2002 - MC-CDMA and the FCT/POCI 2010 research
grant SFRH / BD / 24520 / 200
Channel adaptive fair queueing for scheduling integrated voice and data services in multicode CDMA systems
CDMA (code division multiple access) systems are critical building blocks of future high performance wireless and mobile computing systems. While CDMA systems are very mature for voice services, their potentials in delivering high quality data services are yet to be investigated. One of the most crucial component in an advanced wideband CDMA system is the judicious allocation of bandwidth resources to both voice and high data rate services so as to maximize utilization while satisfying the respective quality of service requirements. Specifically, in a multicode CDMA system, the problem is to intelligently allocate codes to the users' requests. While previous work in the literature has addressed this problem from a capacity point of view, the fairness aspect, which is also important from the users' point of view, is largely ignored. In this paper, we propose a new code allocation approach that is channel adaptive and can guarantee fairness with respect to the users' channel conditions. Simulation results show that out approach is more effective than the proportional fair approach.published_or_final_versio
Analysis and Design of Adaptive OCDMA Passive Optical Networks
OCDMA systems can support multiple classes of service by differentiating code
parameters, power level and diversity order. In this paper, we analyze BER
performance of a multi-class 1D/2D OCDMA system and propose a new approximation
method that can be used to generate accurate estimation of system BER using a
simple mathematical form. The proposed approximation provides insight into
proper system level analysis, system level design and sensitivity of system
performance to the factors such as code parameters, power level and diversity
order. Considering code design, code cardinality and system performance
constraints, two design problems are defined and their optimal solutions are
provided. We then propose an adaptive OCDMA-PON that adaptively shares unused
resources of inactive users among active ones to improve upstream system
performance. Using the approximated BER expression and defined design problems,
two adaptive code allocation algorithms for the adaptive OCDMA-PON are
presented and their performances are evaluated by simulation. Simulation
results show that the adaptive code allocation algorithms can increase average
transmission rate or decrease average optical power consumption of ONUs for
dynamic traffic patterns. According to the simulation results, for an adaptive
OCDMA-PON with BER value of 1e-7 and user activity probability of 0.5,
transmission rate (optical power consumption) can be increased (decreased) by a
factor of 2.25 (0.27) compared to fixed code assignment.Comment: 11 pages, 11 figure
- …
