40,570 research outputs found
Unconfused Ultraconservative Multiclass Algorithms
We tackle the problem of learning linear classifiers from noisy datasets in a
multiclass setting. The two-class version of this problem was studied a few
years ago by, e.g. Bylander (1994) and Blum et al. (1996): in these
contributions, the proposed approaches to fight the noise revolve around a
Perceptron learning scheme fed with peculiar examples computed through a
weighted average of points from the noisy training set. We propose to build
upon these approaches and we introduce a new algorithm called UMA (for
Unconfused Multiclass additive Algorithm) which may be seen as a generalization
to the multiclass setting of the previous approaches. In order to characterize
the noise we use the confusion matrix as a multiclass extension of the
classification noise studied in the aforementioned literature. Theoretically
well-founded, UMA furthermore displays very good empirical noise robustness, as
evidenced by numerical simulations conducted on both synthetic and real data.
Keywords: Multiclass classification, Perceptron, Noisy labels, Confusion MatrixComment: ACML, Australia (2013
Data processing large quantities of multispectral information
Method is combination of digital and optical techniques. Multispectral data is coded into binary matrix format and then encoded onto photographic film. Film is holographically correlated with spectral signature to generate single-class classification map. Number of maps are optically superimposed to produce full-color, multiclass classification map
Axiomatic Interpretability for Multiclass Additive Models
Generalized additive models (GAMs) are favored in many regression and binary
classification problems because they are able to fit complex, nonlinear
functions while still remaining interpretable. In the first part of this paper,
we generalize a state-of-the-art GAM learning algorithm based on boosted trees
to the multiclass setting, and show that this multiclass algorithm outperforms
existing GAM learning algorithms and sometimes matches the performance of full
complexity models such as gradient boosted trees.
In the second part, we turn our attention to the interpretability of GAMs in
the multiclass setting. Surprisingly, the natural interpretability of GAMs
breaks down when there are more than two classes. Naive interpretation of
multiclass GAMs can lead to false conclusions. Inspired by binary GAMs, we
identify two axioms that any additive model must satisfy in order to not be
visually misleading. We then develop a technique called Additive
Post-Processing for Interpretability (API), that provably transforms a
pre-trained additive model to satisfy the interpretability axioms without
sacrificing accuracy. The technique works not just on models trained with our
learning algorithm, but on any multiclass additive model, including multiclass
linear and logistic regression. We demonstrate the effectiveness of API on a
12-class infant mortality dataset.Comment: KDD 201
- …
