2,640 research outputs found

    An evaluation of DGA classifiers

    Get PDF
    Domain Generation Algorithms (DGAs) are a popular technique used by contemporary malware for command-and-control (C&C) purposes. Such malware utilizes DGAs to create a set of domain names that, when resolved, provide information necessary to establish a link to a C&C server. Automated discovery of such domain names in real-time DNS traffic is critical for network security as it allows to detect infection, and, in some cases, take countermeasures to disrupt the communication and identify infected machines. Detection of the specific DGA malware family provides the administrator valuable information about the kind of infection and steps that need to be taken. In this paper we compare and evaluate machine learning methods that classify domain names as benign or DGA, and label the latter according to their malware family. Unlike previous work, we select data for test and training sets according to observation time and known seeds. This allows us to assess the robustness of the trained classifiers for detecting domains generated by the same families at a different time or when seeds change. Our study includes tree ensemble models based on human-engineered features and deep neural networks that learn features automatically from domain names. We find that all state-of-the-art classifiers are significantly better at catching domain names from malware families with a time-dependent seed compared to time-invariant DGAs. In addition, when applying the trained classifiers on a day of real traffic, we find that many domain names unjustifiably are flagged as malicious, thereby revealing the shortcomings of relying on a standard whitelist for training a production grade DGA detection system

    Queueing theory and operations management.

    Get PDF
    Management; Theory;

    What Causes My Test Alarm? Automatic Cause Analysis for Test Alarms in System and Integration Testing

    Full text link
    Driven by new software development processes and testing in clouds, system and integration testing nowadays tends to produce enormous number of alarms. Such test alarms lay an almost unbearable burden on software testing engineers who have to manually analyze the causes of these alarms. The causes are critical because they decide which stakeholders are responsible to fix the bugs detected during the testing. In this paper, we present a novel approach that aims to relieve the burden by automating the procedure. Our approach, called Cause Analysis Model, exploits information retrieval techniques to efficiently infer test alarm causes based on test logs. We have developed a prototype and evaluated our tool on two industrial datasets with more than 14,000 test alarms. Experiments on the two datasets show that our tool achieves an accuracy of 58.3% and 65.8%, respectively, which outperforms the baseline algorithms by up to 13.3%. Our algorithm is also extremely efficient, spending about 0.1s per cause analysis. Due to the attractive experimental results, our industrial partner, a leading information and communication technology company in the world, has deployed the tool and it achieves an average accuracy of 72% after two months of running, nearly three times more accurate than a previous strategy based on regular expressions.Comment: 12 page

    Maximum Likelihood Estimation of Closed Queueing Network Demands from Queue Length Data

    Get PDF
    Resource demand estimation is essential for the application of analyical models, such as queueing networks, to real-world systems. In this paper, we investigate maximum likelihood (ML) estimators for service demands in closed queueing networks with load-independent and load-dependent service times. Stemming from a characterization of necessary conditions for ML estimation, we propose new estimators that infer demands from queue-length measurements, which are inexpensive metrics to collect in real systems. One advantage of focusing on queue-length data compared to response times or utilizations is that confidence intervals can be rigorously derived from the equilibrium distribution of the queueing network model. Our estimators and their confidence intervals are validated against simulation and real system measurements for a multi-tier application

    Combined make-to-order and make-to-stock in a food production system

    Get PDF
    The research into multi-product production/inventory control systems has mainly assumed one of the two strategies: Make-to-Order (MTO) or Make-to-Stock (MTS). In practice, however, many companies cater to an increasing variety of products with varying logistical demands (e.g. short due dates, specific products) and production characteristics (e.g. capacity usage, setup) to different market segments and so they are moving to more MTO-production. As a consequence they operate under a hybrid MTO-MTS strategy. Important issues arising out of such situations are, for example, which products should be manufactured to stock and which ones on order and, how to allocate capacity among various MTO-MTS products. This paper presents the state-of-the-art literature review of the combined MTO-MTS production situations. A variety of production management issues in the context of food processing companies, where combined MTO-MTS production is quite common, are discussed in details. The authors propose a comprehensive hierarchical planning framework that covers the important production management decisions to serve as a starting point for evaluation and further research on the planning system for MTO-MTS situations.

    Ensemble transcript interaction networks: A case study on Alzheimer's disease

    Get PDF
    Systems biology techniques are a topic of recent interest within the neurological field. Computational intelligence (CI) addresses this holistic perspective by means of consensus or ensemble techniques ultimately capable of uncovering new and relevant findings. In this paper, we propose the application of a CI approach based on ensemble Bayesian network classifiers and multivariate feature subset selection to induce probabilistic dependences that could match or unveil biological relationships. The research focuses on the analysis of high-throughput Alzheimer's disease (AD) transcript profiling. The analysis is conducted from two perspectives. First, we compare the expression profiles of hippocampus subregion entorhinal cortex (EC) samples of AD patients and controls. Second, we use the ensemble approach to study four types of samples: EC and dentate gyrus (DG) samples from both patients and controls. Results disclose transcript interaction networks with remarkable structures and genes not directly related to AD by previous studies. The ensemble is able to identify a variety of transcripts that play key roles in other neurological pathologies. Classical statistical assessment by means of non-parametric tests confirms the relevance of the majority of the transcripts. The ensemble approach pinpoints key metabolic mechanisms that could lead to new findings in the pathogenesis and development of A
    corecore