432 research outputs found

    To Stay Or To Switch: Multiuser Dynamic Channel Access

    Full text link
    In this paper we study opportunistic spectrum access (OSA) policies in a multiuser multichannel random access cognitive radio network, where users perform channel probing and switching in order to obtain better channel condition or higher instantaneous transmission quality. However, unlikely many prior works in this area, including those on channel probing and switching policies for a single user to exploit spectral diversity, and on probing and access policies for multiple users over a single channel to exploit temporal and multiuser diversity, in this study we consider the collective switching of multiple users over multiple channels. In addition, we consider finite arrivals, i.e., users are not assumed to always have data to send and demand for channel follow a certain arrival process. Under such a scenario, the users' ability to opportunistically exploit temporal diversity (the temporal variation in channel quality over a single channel) and spectral diversity (quality variation across multiple channels at a given time) is greatly affected by the level of congestion in the system. We investigate the optimal decision process in this case, and evaluate the extent to which congestion affects potential gains from opportunistic dynamic channel switching

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201

    Cooperation and Underlay Mode Selection in Cognitive Radio Network

    Full text link
    In this research, we proposes a new method for cooperation and underlay mode selection in cognitive radio networks. We characterize the maximum achievable throughput of our proposed method of hybrid spectrum sharing. Hybrid spectrum sharing is assumed where the Secondary User (SU) can access the Primary User (PU) channel in two modes, underlay mode or cooperative mode with admission control. In addition to access the channel in the overlay mode, secondary user is allowed to occupy the channel currently occupied by the primary user but with small transmission power. Adding the underlay access modes attains more opportunities to the secondary user to transmit data. It is proposed that the secondary user can only exploits the underlay access when the channel of the primary user direct link is good or predicted to be in non-outage state. Therefore, the secondary user could switch between underlay spectrum sharing and cooperation with the primary user. Hybrid access is regulated through monitoring the state of the primary link. By observing the simulation results, the proposed model attains noticeable improvement in the system performance in terms of maximum secondary user throughput than the conventional cooperation and non-cooperation schemes
    • …
    corecore