442 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    An Analytical Framework for Heterogeneous Partial Feedback Design in Heterogeneous Multicell OFDMA Networks

    Full text link
    The inherent heterogeneous structure resulting from user densities and large scale channel effects motivates heterogeneous partial feedback design in heterogeneous networks. In such emerging networks, a distributed scheduling policy which enjoys multiuser diversity as well as maintains fairness among users is favored for individual user rate enhancement and guarantees. For a system employing the cumulative distribution function based scheduling, which satisfies the two above mentioned desired features, we develop an analytical framework to investigate heterogeneous partial feedback in a general OFDMA-based heterogeneous multicell employing the best-M partial feedback strategy. Exact sum rate analysis is first carried out and closed form expressions are obtained by a novel decomposition of the probability density function of the selected user's signal-to-interference-plus-noise ratio. To draw further insight, we perform asymptotic analysis using extreme value theory to examine the effect of partial feedback on the randomness of multiuser diversity, show the asymptotic optimality of best-1 feedback, and derive an asymptotic approximation for the sum rate in order to determine the minimum required partial feedback.Comment: To appear in IEEE Trans. on Signal Processin

    Large-Scale MIMO versus Network MIMO for Multicell Interference Mitigation

    Full text link
    This paper compares two important downlink multicell interference mitigation techniques, namely, large-scale (LS) multiple-input multiple-output (MIMO) and network MIMO. We consider a cooperative wireless cellular system operating in time-division duplex (TDD) mode, wherein each cooperating cluster includes BB base-stations (BSs), each equipped with multiple antennas and scheduling KK single-antenna users. In an LS-MIMO system, each BS employs BMBM antennas not only to serve its scheduled users, but also to null out interference caused to the other users within the cooperating cluster using zero-forcing (ZF) beamforming. In a network MIMO system, each BS is equipped with only MM antennas, but interference cancellation is realized by data and channel state information exchange over the backhaul links and joint downlink transmission using ZF beamforming. Both systems are able to completely eliminate intra-cluster interference and to provide the same number of spatial degrees of freedom per user. Assuming the uplink-downlink channel reciprocity provided by TDD, both systems are subject to identical channel acquisition overhead during the uplink pilot transmission stage. Further, the available sum power at each cluster is fixed and assumed to be equally distributed across the downlink beams in both systems. Building upon the channel distribution functions and using tools from stochastic ordering, this paper shows, however, that from a performance point of view, users experience better quality of service, averaged over small-scale fading, under an LS-MIMO system than a network MIMO system. Numerical simulations for a multicell network reveal that this conclusion also holds true with regularized ZF beamforming scheme. Hence, given the likely lower cost of adding excess number of antennas at each BS, LS-MIMO could be the preferred route toward interference mitigation in cellular networks.Comment: 13 pages, 7 figures; IEEE Journal of Selected Topics in Signal Processing, Special Issue on Signal Processing for Large-Scale MIMO Communication

    A survey of green scheduling schemes for homogeneous and heterogeneous cellular networks

    Full text link
    • …
    corecore