1,152 research outputs found

    A Bi-directional Energy Splitable Model for Energy Optimization in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks is a budding  prototype of networking and computing, where a node may be self powered and individual node have the capability to sense and compute and communicate. Wireless Sensor Networks have been proposed for variety of applications such as Industrial control and monitoring and home automation and consumer electronics and security andMilitary sensing, Asset tracking and supply chain management, Intelligent Agriculture, Missile directing, Fire alarming, Landslide Warning, Environmental monitoring and health monitoring and commercial applications. In Wireless Sensor Network large number of nodes are deployed randomly. Depends on the network architecture the application may be personalized such as Energy Efficiency, Routing and Power Management and data dissemination. Energy Optimization involves in minimizing an energy expenditure and maximizing the lifetime of the complete network. In the proposed work, the placement of nodes are directly involved with residual energy. Energy Optimization in sensor network is very difficult task to achieve it. The optimization of energy is performed through Bidirectional Energy Splitable Model. The data flow in both forward and backward directions are considered, In order to achieve the best QOS in transmission, some parameters such as load, delay and direction of individual nodes are considered. A mathematical model is developed to determine the data flow of  individual node based on the residual energy

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    Recent Advances in Joint Wireless Energy and Information Transfer

    Full text link
    In this paper, we provide an overview of the recent advances in microwave-enabled wireless energy transfer (WET) technologies and their applications in wireless communications. Specifically, we divide our discussions into three parts. First, we introduce the state-of-the-art WET technologies and the signal processing techniques to maximize the energy transfer efficiency. Then, we discuss an interesting paradigm named simultaneous wireless information and power transfer (SWIPT), where energy and information are jointly transmitted using the same radio waveform. At last, we review the recent progress in wireless powered communication networks (WPCN), where wireless devices communicate using the power harvested by means of WET. Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201
    corecore