3 research outputs found

    Multiframe Motion Segmentation via Penalized MAP Estimation and Linear Programming

    Full text link
    Motion segmentation is an important topic in computer vision. In this paper, we study the problem of multi-body motion segmentation under the affine camera model. We use a mixture of subspace model to describe the multi-body motions. Then the motion segmentation problem is formulated as an MAP estimation problem with model complexity penalty. With several candidate motion models, the problem can be naturally converted into a linear programming problem, which guarantees a global optimality. The main advantages of our algorithm include: It needs no priori on the number of motions and it has comparable high segmentation accuracy with the best of motion-number-known algorithms. Experiments on benchmark data sets illustrate these points

    Multibody Grouping by Inference of Multiple Subspaces from High-Dimensional Data Using Oriented-Frames

    No full text
    Abstract—Recently, subspace constraints have been widely exploited in many computer vision problems such as multibody grouping. Under linear projection models, feature points associated with multiple bodies reside in multiple subspaces. Most existing factorizationbased algorithms can segment objects undergoing independent motions. However, intersections among the correlated motion subspaces will lead most previous factorization-based algorithms to erroneous segmentation. To overcome this limitation, in this paper, we formulate the problem of multibody grouping as inference of multiple subspaces from a high-dimensional data space. A novel and robust algorithm is proposed to capture the configuration of the multiple subspace structure and to find the segmentation of objects by clustering the feature points into these inferred subspaces, no matter whether they are independent or correlated. In the proposed method, an Oriented-Frame (OF), which is a multidimensional coordinate frame, is associated with each data point indicating the point’s preferred subspace configuration. Based on the similarity between the subspaces, novel mechanisms of subspace evolution and voting are developed. By filtering the outliers due to their structural incompatibility, the subspace configurations will emerge. Compared with most existing factorization-based algorithms that cannot correctly segment correlated motions, such as motions of articulated objects, the proposed method has a robust performance in both independent and correlated motion segmentation. A number of controlled and real experiments show the effectiveness of the proposed method. However, the current approach does not deal with transparent motions and motion subspaces of different dimensions. Index Terms—Computer vision, motion segmentation, subspace constraints.
    corecore