2 research outputs found

    A Triband Planar Inverted-F Antenna with Quadratic Koch Fractal Shaped Slit Along with a Shorted Parasitic Strip

    Get PDF
    In this paper, a novel compact tri-band planar inverted-F antenna (PIFA) for mobile communication application is proposed. The antenna is capable to cover GSM 900 MHz, DCS 1.8 GHz and WLAN (IEEE 802.11b) 2.45 GHz bands. The proposed PIFA is composed of a quadratic Koch shape slit and a parasitic strip. The PIFA with the fractal shaped slit contributes to the first and second resonance while the shorted strip brings forth the third band. The impedance bandwidths of 84 MHz, 132 MHz and 81 MHz for GSM 900, DCS 1800 and WLAN (IEEE 802.11b) 2450, respectively are achieved. A realized gain of 2.44 dBi, 4.48 dBi and 3.86 dBi is obtained at 0.9 GHz, 1.8 GHz and 2.45 GHz, respectively. The proposed antenna is fabricated and |S11| dB is measured. Reasonable agreement between simulated results as well as measured results is obtained

    Multiband Operation and Performance Enhancement of the PIFA Antenna by Using Particle Swarm Optimization and Overlapping Method

    No full text
    Recently, the demand for wireless devices that support multiband frequency has increased. The integration of such technology in mobile communication system has led to a great demand in developing small size antenna with multiband operation, which is able to operate in the required system. In this paper, a novel type planar inverted F antenna (PIFA) with gridded ground plane structure and overlapping cells is presented. By controlling the overlapping size, we improve the characteristics of the proposed antenna. This antenna is developed to achieve multiband operation with small size and good performance. The particle swarm optimization (PSO) is employed to a PIFA antenna to get rid of the limitations of single band operation by searching the optimal localization and length of linear slots on the ground plane to give triband operation. This PIFA antenna can be integrated to operate for several mobile applications as Bluetooth/WLAN, WIMAX, and 4G (UMTS2100, LTE). The optimized antenna is simulated by both Ansoft HFSS and computer simulation technology microwave studio (CSTMWS) in terms of S-parameters. A good agreement between simulated performances by both software types is achieved. A parametric study is made to analyze the effect of different PIFA parameters on the operating frequency and the reflection coefficient in order to enhance the antenna performances. In these frequency bands, the antenna has nearly omnidirectional radiation pattern
    corecore