47,901 research outputs found
Control of Networked Multiagent Systems with Uncertain Graph Topologies
Multiagent systems consist of agents that locally exchange information
through a physical network subject to a graph topology. Current control methods
for networked multiagent systems assume the knowledge of graph topologies in
order to design distributed control laws for achieving desired global system
behaviors. However, this assumption may not be valid for situations where graph
topologies are subject to uncertainties either due to changes in the physical
network or the presence of modeling errors especially for multiagent systems
involving a large number of interacting agents. Motivating from this
standpoint, this paper studies distributed control of networked multiagent
systems with uncertain graph topologies. The proposed framework involves a
controller architecture that has an ability to adapt its feed- back gains in
response to system variations. Specifically, we analytically show that the
proposed controller drives the trajectories of a networked multiagent system
subject to a graph topology with time-varying uncertainties to a close
neighborhood of the trajectories of a given reference model having a desired
graph topology. As a special case, we also show that a networked multi-agent
system subject to a graph topology with constant uncertainties asymptotically
converges to the trajectories of a given reference model. Although the main
result of this paper is presented in the context of average consensus problem,
the proposed framework can be used for many other problems related to networked
multiagent systems with uncertain graph topologies.Comment: 14 pages, 2 figure
Adaptive multiagent system for seismic emergency management
Presently, most multiagent frameworks are typically programmed in Java. Since the JADE platform has been recently ported to .NET, we used it to create an adaptive multiagent system where the knowledge base of the agents is managed using the CLIPS language, also called from .NET. The multiagent system is applied to create seismic risk scenarios, simulations of emergency situations, in which different parties, modeled as adaptive agents, interact and cooperate.adaptive systems, risk management, seisms.
The Total s-Energy of a Multiagent System
We introduce the "total s-energy" of a multiagent system with time-dependent
links. This provides a new analytical lens on bidirectional agreement dynamics,
which we use to bound the convergence rates of dynamical systems for
synchronization, flocking, opinion dynamics, and social epistemology
- …
