283,258 research outputs found

    Multi-user Communication in Difficult Interference

    Full text link
    The co-channel interference (CCI) is one of the major impairments in wireless communication. CCI typically reduces the reliability of wireless communication links, but the difficult CCI which is no more or less strong to the desired signals destroys wireless links despite having myriad of CCI mitigation methods. It is shown in this paper that M-QAM (Quadrature Amplitude Modulation) or similar modulation schemes which modulate information both in in-phase and quadrature-phase are particularly vulnerable to difficult CCI. Despite well-known shortcomings, it is shown in this paper that M-PAM or similar schemes that use a single dimension for modulation provides an important mean for difficult CCI mitigation.Comment: 4 pages, 2 figs and accepted in IEEE ICASSP 2019, Brighton, U

    Pseudo-Lattice Treatment for Subspace Aligned Interference Signals

    Full text link
    For multi-input multi-output (MIMO) K-user interference networks, we propose the use of a channel transformation technique for joint detection of the useful and interference signals in an interference alignment scenario. We coin our detection technique as "pseudo-lattice treatment" and show that applying our technique, we can alleviate limitations facing Lattice Interference Alignment (L-IA). We show that for a 3-user interference network, two of the users can have their interference aligned in lattice structure through precoding. For the remaining user, performance gains in decoding subspace interference aligned signals at the receiver are achieved using our channel transformation technique. Our "pseudo-lattice" technique can also be applied at all users in case of Subspace Interference Alignment (S-IA). We investigate different solutions for applying channel transformation at the third receiver and evaluate performance for these techniques. Simulations are conducted to show the performance gain in using our pseudo-lattice method over other decoding techniques using different modulation schemes

    Exploiting Spatial Interference Alignment and Opportunistic Scheduling in the Downlink of Interference Limited Systems

    Full text link
    In this paper we analyze the performance of single stream and multi-stream spatial multiplexing (SM) systems employing opportunistic scheduling in the presence of interference. In the proposed downlink framework, every active user reports the post-processing signal-to-interference-plus-noise-power-ratio (post-SINR) or the receiver specific mutual information (MI) to its own transmitter using a feedback channel. The combination of scheduling and multi-antenna receiver processing leads to substantial interference suppression gain. Specifically, we show that opportunistic scheduling exploits spatial interference alignment (SIA) property inherent to a multi-user system for effective interference mitigation. We obtain bounds for the outage probability and the sum outage capacity for single stream and multi stream SM employing real or complex encoding for a symmetric interference channel model. The techniques considered in this paper are optimal in different operating regimes. We show that the sum outage capacity can be maximized by reducing the SM rate to a value less than the maximum allowed value. The optimum SM rate depends on the number of interferers and the number of available active users. In particular, we show that the generalized multi-user SM (MU SM) method employing real-valued encoding provides a performance that is either comparable, or significantly higher than that of MU SM employing complex encoding. A combination of analysis and simulation is used to describe the trade-off between the multiplexing rate and sum outage capacity for different antenna configurations

    Dynamic Scheduling for Delay Guarantees for Heterogeneous Cognitive Radio Users

    Full text link
    We study an uplink multi secondary user (SU) system having statistical delay constraints, and an average interference constraint to the primary user (PU). SUs with heterogeneous interference channel statistics, to the PU, experience heterogeneous delay performances since SUs causing low interference are scheduled more frequently than those causing high interference. We propose a scheduling algorithm that can provide arbitrary average delay guarantees to SUs irrespective of their statistical channel qualities. We derive the algorithm using the Lyapunov technique and show that it yields bounded queues and satisfy the interference constraints. Using simulations, we show its superiority over the Max-Weight algorithm.Comment: Asilomar 2015. arXiv admin note: text overlap with arXiv:1602.0801

    Optimal Linear Precoding for Indoor Visible Light Communication System

    Full text link
    Visible light communication (VLC) is an emerging technique that uses light-emitting diodes (LED) to combine communication and illumination. It is considered as a promising scheme for indoor wireless communication that can be deployed at reduced costs while offering high data rate performance. In this paper, we focus on the design of the downlink of a multi-user VLC system. Inherent to multi-user systems is the interference caused by the broadcast nature of the medium. Linear precoding based schemes are among the most popular solutions that have recently been proposed to mitigate inter-user interference. This paper focuses on the design of the optimal linear precoding scheme that solves the max-min signal-to-interference-plus-noise ratio (SINR) problem. The performance of the proposed precoding scheme is studied under different working conditions and compared with the classical zero-forcing precoding. Simulations have been provided to illustrate the high gain of the proposed scheme.Comment: 5 pages, 4 figures, accepted for publication in ICC proceedings 201

    Fundamental limits of many-user MAC with finite payloads and fading

    Full text link
    Consider a (multiple-access) wireless communication system where users are connected to a unique base station over a shared-spectrum radio links. Each user has a fixed number kk of bits to send to the base station, and his signal gets attenuated by a random channel gain (quasi-static fading). In this paper we consider the many-user asymptotics of Chen-Chen-Guo'2017, where the number of users grows linearly with the blocklength. In addition, we adopt a per-user probability of error criterion of Polyanskiy'2017 (as opposed to classical joint-error probability criterion). Under these two settings we derive bounds on the optimal required energy-per-bit for reliable multi-access communication. We confirm the curious behaviour (previously observed for non-fading MAC) of the possibility of perfect multi-user interference cancellation for user densities below a critical threshold. Further we demonstrate the suboptimality of standard solutions such as orthogonalization (i.e., TDMA/FDMA) and treating interference as noise (i.e. pseudo-random CDMA without multi-user detection).Comment: 38 pages, conference version accepted to IEEE ISIT 201
    corecore