129,317 research outputs found

    Multi-user Communication in Difficult Interference

    Full text link
    The co-channel interference (CCI) is one of the major impairments in wireless communication. CCI typically reduces the reliability of wireless communication links, but the difficult CCI which is no more or less strong to the desired signals destroys wireless links despite having myriad of CCI mitigation methods. It is shown in this paper that M-QAM (Quadrature Amplitude Modulation) or similar modulation schemes which modulate information both in in-phase and quadrature-phase are particularly vulnerable to difficult CCI. Despite well-known shortcomings, it is shown in this paper that M-PAM or similar schemes that use a single dimension for modulation provides an important mean for difficult CCI mitigation.Comment: 4 pages, 2 figs and accepted in IEEE ICASSP 2019, Brighton, U

    Degrees of freedom of wireless interference network

    Get PDF
    Wireless communication systems are different from the wired systems mainly in three aspects: fading, broadcast, and superposition. Wireless communication networks, and multi-user communication networks in general, have not been well understood from the information-theoretic perspective: the capacity limits of many multi-user networks are not known. For example, the capacity region of a two-user single-antenna interference channel is still not known, though recent result can bound the region up to a constant value. Characterizing the capacity limits of multi-user multiple-input multiple-output (MIMO) interference network is usually even more difficult than the single antenna setup. To alleviate the difficulty in studying such networks, the concept of degrees of freedom (DoF) has been adopted, which captures the first order behavior of the capacities or capacity regions. One important technique developed recently for quantifying the DoF of multi-user networks is the so-called interference alignment. The purpose of interference alignment is to design the transmit signals structurally so that the interference signals from multiple interferers are aligned to reduce the signal dimensions occupied by interference. In this thesis, we mainly study two problems related to DoF and interference alignment: 1) DoF region of MIMO full interference channel (FIC) and Z interference channel (ZIC) with reconfigurable antennas, and 2) the DoF region of an interference network with general message demands. For the first problem, we derive the outer bound on the DoF region and show that it is achievable via time-sharing or beamforming except for one special case. As to this particular special case, we develop a systematic way of constructing the DoF-achieving nulling and beamforming matrices. Our results reveal the potential benefit of using the reconfigurable antenna in MIMO FIC and ZIC. In addition, the achievability scheme has an interesting space-frequency interpretation. For the second problem, we derive the DoF region of a single antenna interference network with general message demands, which includes the multiple unicasts and multiple multicasts as special cases. We perform interference alignment using multiple base vectors and align the interference at each receiver to its largest interferer. Furthermore, we show that the DoF region is determined by a subset of receivers, and the DoF region can be achieved by considering a smaller number of interference alignment constraints so as to reduce the number of time expansion. Finally, as a related research topic, we also include a result on the average throughput of a MIMO interference channel with single-user detector at receivers and without channel state information at transmitters. We present a piecewise linear approximation of the channel throughput under weak, moderate and strong interference regimes. Based on that we determine the optimal number of streams that a transmitter should use for different interference levels

    Precoding design for Han-Kobayashi's signal splitting in MIMO interference networks

    Full text link
    © 2017 The Institute of Electronics, Information and Communication Engineers. For a multiuser multi-input multi-output (MU-MIMO) multicell network, the Han-Kobayashi strategy aims to improve the achievable rate region by splitting the data information intended to a serviced user (UE) into a common message and a private message. The common message is decodable by this UE and another UE from an adjacent cell so that the corresponding intercell interference is cancelled off. This work aims to design optimal precoders for both common and private messages to maximize the network sum-rate, which is a highly nonlinear and nonsmooth function in the precoder matrix variables. Existing approaches are unable to address this difficult problem. In this paper, we develop a successive convex quadratic programming algorithm that generates a sequence of improved points. We prove that the proposed algorithm converges to at least a local optimum of the considered problem. Numerical results confirm the advantages of our proposed algorithm over conventional coordinated precoding approaches where the intercell interference is treated as noise

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio
    • …
    corecore