9 research outputs found

    Enabling Team of Teams: A Trust Inference and Propagation (TIP) Model in Multi-Human Multi-Robot Teams

    Full text link
    Trust has been identified as a central factor for effective human-robot teaming. Existing literature on trust modeling predominantly focuses on dyadic human-autonomy teams where one human agent interacts with one robot. There is little, if not no, research on trust modeling in teams consisting of multiple human agents and multiple robotic agents. To fill this research gap, we present the trust inference and propagation (TIP) model for trust modeling in multi-human multi-robot teams. In a multi-human multi-robot team, we postulate that there exist two types of experiences that a human agent has with a robot: direct and indirect experiences. The TIP model presents a novel mathematical framework that explicitly accounts for both types of experiences. To evaluate the model, we conducted a human-subject experiment with 15 pairs of participants (N=30{N=30}). Each pair performed a search and detection task with two drones. Results show that our TIP model successfully captured the underlying trust dynamics and significantly outperformed a baseline model. To the best of our knowledge, the TIP model is the first mathematical framework for computational trust modeling in multi-human multi-robot teams.Comment: In Proceedings of Robotics: Science and Systems, 2023, Daegu, Korea. arXiv admin note: text overlap with arXiv:2301.1092

    Real-Time Estimation of Drivers' Trust in Automated Driving Systems

    Full text link
    Trust miscalibration issues, represented by undertrust and overtrust, hinder the interaction between drivers and self-driving vehicles. A modern challenge for automotive engineers is to avoid these trust miscalibration issues through the development of techniques for measuring drivers' trust in the automated driving system during real-time applications execution. One possible approach for measuring trust is through modeling its dynamics and subsequently applying classical state estimation methods. This paper proposes a framework for modeling the dynamics of drivers' trust in automated driving systems and also for estimating these varying trust levels. The estimation method integrates sensed behaviors (from the driver) through a Kalman lter-based approach. The sensed behaviors include eye-tracking signals, the usage time of the system, and drivers' performance on a non-driving-related task (NDRT). We conducted a study (n = 80) with a simulated SAE level 3 automated driving system, and analyzed the factors that impacted drivers' trust in the system. Data from the user study were also used for the identi cation of the trust model parameters. Results show that the proposed approach was successful in computing trust estimates over successive interactions between the driver and the automated driving system. These results encourage the use of strategies for modeling and estimating trust in automated driving systems. Such trust measurement technique paves a path for the design of trust-aware automated driving systems capable of changing their behaviors to control drivers' trust levels to mitigate both undertrust and overtrust.National Science FoundationBrazilian Army's Department of Science and TechnologyAutomotive Research Center (ARC) at the University of MichiganU.S. Army CCDC/GVSC (government contract DoD-DoA W56HZV14-2-0001).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162572/1/Azevedo Sa et al. 2020.pdfSEL

    A Unified Bi-directional Model for Natural and Artificial Trust in Human–Robot Collaboration

    Full text link
    We introduce a novel capabilities-based bidirectional multi-task trust model that can be used for trust prediction from either a human or a robotic trustor agent. Tasks are represented in terms of their capability requirements, while trustee agents are characterized by their individual capabilities. Trustee agents’ capabilities are not deterministic; they are represented by belief distributions. For each task to be executed, a higher level of trust is assigned to trustee agents who have demonstrated that their capabilities exceed the task’s requirements. We report results of an online experiment with 284 participants, revealing that our model outperforms existing models for multi-task trust prediction from a human trustor. We also present simulations of the model for determining trust from a robotic trustor. Our model is useful for control authority allocation applications that involve human–robot teams.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/167859/1/Azevedo-Sa et al. 2021.pdfDescription of Azevedo-Sa et al. 2021.pdf : PreprintSEL

    Improving Collaboration Between Drivers and Automated Vehicles with Trust Processing Methods

    Full text link
    Trust has gained attention in the Human-Robot Interaction (HRI) field, as it is considered an antecedent of people's reliance on machines. In general, people are likely to rely on and use machines they trust, and to refrain from using machines they do not trust. Recent advances in robotic perception technologies open paths for the development of machines that can be aware of people's trust by observing their human behaviors. This dissertation explores the role of trust in the interactions between humans and robots, particularly Automated Vehicles (AVs). Novel methods and models are proposed for perceiving and processing drivers' trust in AVs and for determining both humans' natural trust and robots' artificial trust. Two high-level problems are addressed in this dissertation: (1) the problem of avoiding or reducing miscalibrations of drivers' trust in AVs, and (2) the problem of how trust can be used to dynamically allocate tasks between a human and a robot that collaborate. A complete solution is proposed for the problem of avoiding or reducing trust miscalibrations. This solution combines methods for estimating and influencing drivers' trust through interactions with the AV. Three main contributions stem from that solution: (i) the characterization of risk factors that affect drivers’ trust in AVs, which provided theoretical evidence for the development of a linear model for driver trust in AVs; (ii) the development of a new method for real-time trust estimation, which leveraged the trust linear model mentioned above for the implementation of a Kalman-filter-based approach, able to provide numerical estimates from the processing of drivers' behavioral measurements; and (iii) the development of a new method for trust calibration, which identifies trust miscalibration instances from comparisons between drivers' trust in the AV and that AV's capabilities, and triggers messages from the AV to the driver. These messages are effective for encouraging or warning drivers that are undertrusting or overtrusting the AV capabilities respectively as shown by the obtained results. Although the development of a trust-based solution for dynamically allocating tasks between a human and a robot (i.e., the second high-level problem addressed in this dissertation) remains an open problem, we take a step forward in that direction. The fourth contribution of this dissertation is the development of a unified bi-directional model for predicting natural and artificial trust. This trust model is based on mathematical representations of both the trustee agent's capabilities and the required capabilities for the execution of a task. Trust emerges from comparisons between the agent capabilities and task requirements, roughly replicating the following logic: if a trustee agent's capabilities exceed the requirements for executing a certain task, then the agent can be highly trusted (to execute that task); conversely, if that trustee agent's capabilities fall short of that task requirements, trust should be low. In this trust model, the agent's capabilities are represented by random variables that are dynamically updated over interactions between the trustor and the trustee whenever the trustee is successful or fails in the execution of a task. These capability representations allow for the numerical computation of human's trust or robot's trust, which is represented by the probability of a given trustee agent to execute a given task successfully.PHDRoboticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169615/1/azevedo_1.pd
    corecore