7,042 research outputs found

    Multi-resolution Tensor Learning for Large-Scale Spatial Data

    Get PDF
    High-dimensional tensor models are notoriously computationally expensive to train. We present a meta-learning algorithm, MMT, that can significantly speed up the process for spatial tensor models. MMT leverages the property that spatial data can be viewed at multiple resolutions, which are related by coarsening and finegraining from one resolution to another. Using this property, MMT learns a tensor model by starting from a coarse resolution and iteratively increasing the model complexity. In order to not "over-train" on coarse resolution models, we investigate an information-theoretic fine-graining criterion to decide when to transition into higher-resolution models. We provide both theoretical and empirical evidence for the advantages of this approach. When applied to two real-world large-scale spatial datasets for basketball player and animal behavior modeling, our approach demonstrate 3 key benefits: 1) it efficiently captures higher-order interactions (i.e., tensor latent factors), 2) it is orders of magnitude faster than fixed resolution learning and scales to very fine-grained spatial resolutions, and 3) it reliably yields accurate and interpretable models

    SurReal: enhancing Surgical simulation Realism using style transfer

    Get PDF
    Surgical simulation is an increasingly important element of surgical education. Using simulation can be a means to address some of the significant challenges in developing surgical skills with limited time and resources. The photo-realistic fidelity of simulations is a key feature that can improve the experience and transfer ratio of trainees. In this paper, we demonstrate how we can enhance the visual fidelity of existing surgical simulation by performing style transfer of multi-class labels from real surgical video onto synthetic content. We demonstrate our approach on simulations of cataract surgery using real data labels from an existing public dataset. Our results highlight the feasibility of the approach and also the powerful possibility to extend this technique to incorporate additional temporal constraints and to different applications

    Geometrically Intrinsic Nonlinear Recursive Filters I: Algorithms

    Full text link
    The Geometrically Intrinsic Nonlinear Recursive Filter, or GI Filter, is designed to estimate an arbitrary continuous-time Markov diffusion process X subject to nonlinear discrete-time observations. The GI Filter is fundamentally different from the much-used Extended Kalman Filter (EKF), and its second-order variants, even in the simplest nonlinear case, in that: (i) It uses a quadratic function of a vector observation to update the state, instead of the linear function used by the EKF. (ii) It is based on deeper geometric principles, which make the GI Filter coordinate-invariant. This implies, for example, that if a linear system were subjected to a nonlinear transformation f of the state-space and analyzed using the GI Filter, the resulting state estimates and conditional variances would be the push-forward under f of the Kalman Filter estimates for the untransformed system - a property which is not shared by the EKF or its second-order variants. The noise covariance of X and the observation covariance themselves induce geometries on state space and observation space, respectively, and associated canonical connections. A sequel to this paper develops stochastic differential geometry results - based on "intrinsic location parameters", a notion derived from the heat flow of harmonic mappings - from which we derive the coordinate-free filter update formula. The present article presents the algorithm with reference to a specific example - the problem of tracking and intercepting a target, using sensors based on a moving missile. Computational experiments show that, when the observation function is highly nonlinear, there exist choices of the noise parameters at which the GI Filter significantly outperforms the EKF.Comment: 22 pages, 4 figure
    • …
    corecore