2,879,875 research outputs found
Combining multi-source information for crop monitoring
Time series of optical satellite images acquired at high spatial resolution constitute an important source of information for crop monitoring, in particular for keeping track of crop harvest. However, the quantity of information extracted from this source is often restricted by acquisition gaps and uncertainty of radiometric values. This paper presents a novel approach that addresses this issue by combining time series of satellite images with other information from crop modeling and expert knowledge. An application for sugarcane harvest detection on Reunion Island using a SPOT5 time series is detailed. In a fuzzy framework, an expert system was designed and developed to combine multi-source information and to make decisions. This expert system was assessed for two sugarcane farms. Results obtained were in substantial agreement with ground truth data; the overall accuracy reached 96.07%. (Résumé d'auteur
Mediator-assisted multi-source routing in information-centric networks
Among the new communication paradigms recently proposed, information-centric networking (ICN) is able to natively support content awareness at the network layer shifting the focus from hosts (as in traditional IP networks) to information objects. In this paper, we exploit the intrinsic content-awareness ICN features to design a novel multi-source routing mechanism. It involves a new network entity, the ICN mediator, responsible for locating and delivering the requested information objects that are chunked and stored at different locations. Our approach imposes very limited signalling overhead, especially for large chunk size (MBytes). Simulations show significant latency reduction compared to traditional routing approaches
Distortion Exponent in MIMO Fading Channels with Time-Varying Source Side Information
Transmission of a Gaussian source over a time-varying multiple-input
multiple-output (MIMO) channel is studied under strict delay constraints.
Availability of a correlated side information at the receiver is assumed, whose
quality, i.e., correlation with the source signal, also varies over time. A
block-fading model is considered for the states of the time-varying channel and
the time-varying side information; and perfect state information at the
receiver is assumed, while the transmitter knows only the statistics. The high
SNR performance, characterized by the \textit{distortion exponent}, is studied
for this joint source-channel coding problem. An upper bound is derived and
compared with lowers based on list decoding, hybrid digital-analog
transmission, as well as multi-layer schemes which transmit successive
refinements of the source, relying on progressive and superposed transmission
with list decoding. The optimal distortion exponent is characterized for the
single-input multiple-output (SIMO) and multiple-input single-output (MISO)
scenarios by showing that the distortion exponent achieved by multi-layer
superpositon encoding with joint decoding meets the proposed upper bound. In
the MIMO scenario, the optimal distortion exponent is characterized in the low
bandwidth ratio regime, and it is shown that the multi-layer superposition
encoding performs very close to the upper bound in the high bandwidth expansion
regime.Comment: Submitted to IEEE Transactions on Information Theor
Intelligent multimedia indexing and retrieval through multi-source information extraction and merging
This paper reports work on automated meta-data\ud
creation for multimedia content. The approach results\ud
in the generation of a conceptual index of\ud
the content which may then be searched via semantic\ud
categories instead of keywords. The novelty\ud
of the work is to exploit multiple sources of\ud
information relating to video content (in this case\ud
the rich range of sources covering important sports\ud
events). News, commentaries and web reports covering\ud
international football games in multiple languages\ud
and multiple modalities is analysed and the\ud
resultant data merged. This merging process leads\ud
to increased accuracy relative to individual sources
A Method for Individual Source Brightness Estimation in Single- and Multi-band Data
We present a method of reliably extracting the flux of individual sources
from sky maps in the presence of noise and a source population in which number
counts are a steeply falling function of flux. The method is an extension of a
standard Bayesian procedure in the millimeter/submillimeter literature. As in
the standard method, the prior applied to source flux measurements is derived
from an estimate of the source counts as a function of flux, dN/dS. The key
feature of the new method is that it enables reliable extraction of properties
of individual sources, which previous methods in the literature do not. We
first present the method for extracting individual source fluxes from data in a
single observing band, then we extend the method to multiple bands, including
prior information about the spectral behavior of the source population(s). The
multi-band estimation technique is particularly relevant for classifying
individual sources into populations according to their spectral behavior. We
find that proper treatment of the correlated prior information between
observing bands is key to avoiding significant biases in estimations of
multi-band fluxes and spectral behavior, biases which lead to significant
numbers of misclassified sources. We test the single- and multi-band versions
of the method using simulated observations with observing parameters similar to
that of the South Pole Telescope data used in Vieira, et al. (2010).Comment: 11 emulateapj pages, 3 figures, revised to match published versio
Resilient Source Coding
This paper provides a source coding theorem for multi-dimensional information
signals when, at a given instant, the distribution associated with one
arbitrary component of the signal to be compressed is not known and a side
information is available at the destination. This new framework appears to be
both of information-theoretical and game-theoretical interest: it provides a
new type of constraints to compress an information source; it is useful for
designing certain types of mediators in games and characterize utility regions
for games with signals. Regarding the latter aspect, we apply the derived
source coding theorem to the prisoner's dilemma and the battle of the sexes
The Three-User Finite-Field Multi-Way Relay Channel with Correlated Sources
This paper studies the three-user finite-field multi-way relay channel, where
the users exchange messages via a relay. The messages are arbitrarily
correlated, and the finite-field channel is linear and is subject to additive
noise of arbitrary distribution. The problem is to determine the minimum
achievable source-channel rate, defined as channel uses per source symbol
needed for reliable communication. We combine Slepian-Wolf source coding and
functional-decode-forward channel coding to obtain the solution for two classes
of source and channel combinations. Furthermore, for correlated sources that
have their common information equal their mutual information, we propose a new
coding scheme to achieve the minimum source-channel rate.Comment: Author's final version (accepted and to appear in IEEE Transactions
on Communications
- …
